Quantifying the dynamic characteristics of indoor air pollution using real-time sensors: Current status and future implication

环境科学 室内空气质量 空气污染 空气监测 空气质量指数 软件部署 污染物 环境监测 计算机科学 实时计算 环境工程 气象学 地理 化学 有机化学 操作系统
作者
Jinze Wang,Wei Du,Yali Lei,Yuanchen Chen,Zhenglu Wang,Kang Mao,Shu Tao,Bo Pan
出处
期刊:Environment International [Elsevier]
卷期号:175: 107934-107934 被引量:31
标识
DOI:10.1016/j.envint.2023.107934
摘要

People generally spend most of their time indoors, making indoor air quality be of great significance to human health. Large spatiotemporal heterogeneity of indoor air pollution can be hardly captured by conventional filter-based monitoring but real-time monitoring. Real-time monitoring is conducive to change air assessment mode from static and sparse analysis to dynamic and massive analysis, and has made remarkable strides in indoor air evaluation. In this review, the state of art, strengths, challenges, and further development of real-time sensors used in indoor air evaluation are focused on. Researches using real-time sensors for indoor air evaluation have increased rapidly since 2018, and are mainly conducted in China and the USA, with the most frequently investigated air pollutants of PM2.5. In addition to high spatiotemporal resolution, real-time sensors for indoor air evaluation have prominent advantages in 3-dimensional monitoring, pollution peak and source identification, and short-term health effect evaluation. Huge amounts of data from real-time sensors also facilitate the modeling and prediction of indoor air pollution. However, challenges still remain in extensive deployment of real-time sensors indoors, including the selection, performance, stability, as well as calibration of sensors. In future, sensors with high performance, long-term stability, low price, and low energy consumption are welcomed. Furthermore, more target air pollutants are also expected to be detected simultaneously by real-time sensors in indoor air monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助子然采纳,获得10
1秒前
落梦发布了新的文献求助20
1秒前
星辰大海应助leyellows采纳,获得10
4秒前
Fantuan发布了新的文献求助10
4秒前
5秒前
6秒前
bofu完成签到,获得积分10
6秒前
Yifan2024应助55555采纳,获得50
6秒前
zho应助岁月荣耀采纳,获得10
6秒前
飘逸一德完成签到,获得积分10
7秒前
8秒前
8秒前
hnxxangel完成签到,获得积分10
8秒前
小二郎应助飘逸的三毒采纳,获得10
8秒前
chen完成签到,获得积分20
10秒前
漂亮送终发布了新的文献求助10
12秒前
12秒前
xingyuwuhen007完成签到,获得积分20
16秒前
子然发布了新的文献求助10
17秒前
19秒前
20秒前
21秒前
安静幻枫应助温良恭俭让采纳,获得50
22秒前
LBJ完成签到,获得积分10
23秒前
chen发布了新的文献求助10
24秒前
joye发布了新的文献求助10
25秒前
漂亮送终完成签到,获得积分10
26秒前
vvv发布了新的文献求助10
27秒前
27秒前
27秒前
三笠完成签到,获得积分10
27秒前
27秒前
等待的如天完成签到,获得积分20
29秒前
30秒前
32秒前
Yifan2024应助冰凌心恋采纳,获得30
32秒前
JDQW发布了新的文献求助10
32秒前
32秒前
ding应助chen采纳,获得10
32秒前
月轩姐姐发布了新的文献求助10
33秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387466
求助须知:如何正确求助?哪些是违规求助? 3000207
关于积分的说明 8789936
捐赠科研通 2686116
什么是DOI,文献DOI怎么找? 1471475
科研通“疑难数据库(出版商)”最低求助积分说明 680302
邀请新用户注册赠送积分活动 673072