纤毛病
纤毛
生物
表型
遗传学
神经科学
细胞生物学
基因
作者
Pleasantine Mill,Søren T. Christensen,Lotte B. Pedersen
标识
DOI:10.1038/s41576-023-00587-9
摘要
Primary cilia, antenna-like sensory organelles protruding from the surface of most vertebrate cell types, are essential for regulating signalling pathways during development and adult homeostasis. Mutations in genes affecting cilia cause an overlapping spectrum of >30 human diseases and syndromes, the ciliopathies. Given the immense structural and functional diversity of the mammalian cilia repertoire, there is a growing disconnect between patient genotype and associated phenotypes, with variable severity and expressivity characteristic of the ciliopathies as a group. Recent technological developments are rapidly advancing our understanding of the complex mechanisms that control biogenesis and function of primary cilia across a range of cell types and are starting to tackle this diversity. Here, we examine the structural and functional diversity of primary cilia, their dynamic regulation in different cellular and developmental contexts and their disruption in disease. Mutations that affect primary cilia cause ciliopathies with variable severity and expressivity. The diversity of cilia across cell types, tissues and developmental stages enables their function as versatile signalling hubs but may underlie the disconnect between genotype and phenotype. This Review examines the structural and functional diversity of primary cilia, their dynamic regulation in different cellular and developmental contexts and their disruption in disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI