Representing Multimodal Behaviors With Mean Location for Pedestrian Trajectory Prediction

弹道 计算机科学 混合模型 多模态 人工智能 高斯分布 潜变量 模式识别(心理学) 机器学习 天文 量子力学 物理 万维网
作者
Liushuai Shi,Le Wang,Chengjiang Long,Sanping Zhou,Wei Tang,Nanning Zheng,Gang Hua
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (9): 11184-11202 被引量:13
标识
DOI:10.1109/tpami.2023.3268110
摘要

Representing multimodal behaviors is a critical challenge for pedestrian trajectory prediction. Previous methods commonly represent this multimodality with multiple latent variables repeatedly sampled from a latent space, encountering difficulties in interpretable trajectory prediction. Moreover, the latent space is usually built by encoding global interaction into future trajectory, which inevitably introduces superfluous interactions and thus leads to performance reduction. To tackle these issues, we propose a novel Interpretable Multimodality Predictor (IMP) for pedestrian trajectory prediction, whose core is to represent a specific mode by its mean location. We model the distribution of mean location as a Gaussian Mixture Model (GMM) conditioned on sparse spatio-temporal features, and sample multiple mean locations from the decoupled components of GMM to encourage multimodality. Our IMP brings four-fold benefits: 1) Interpretable prediction to provide semantics about the motion behavior of a specific mode; 2) Friendly visualization to present multimodal behaviors; 3) Well theoretical feasibility to estimate the distribution of mean locations supported by the central-limit theorem; 4) Effective sparse spatio-temporal features to reduce superfluous interactions and model temporal continuity of interaction. Extensive experiments validate that our IMP not only outperforms state-of-the-art methods but also can achieve a controllable prediction by customizing the corresponding mean location.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Dada应助lkk采纳,获得30
4秒前
李健应助pinkangel采纳,获得10
4秒前
5秒前
5秒前
小党发布了新的文献求助10
6秒前
7秒前
llchen完成签到,获得积分10
7秒前
8秒前
091完成签到 ,获得积分10
10秒前
勤奋一刀发布了新的文献求助10
10秒前
圆圆发布了新的文献求助10
15秒前
xxxx完成签到,获得积分10
17秒前
17秒前
高高完成签到,获得积分10
20秒前
stuart发布了新的文献求助10
20秒前
LaTeXer应助城市猎人采纳,获得100
22秒前
wjn完成签到,获得积分10
23秒前
炎炎夏无声完成签到 ,获得积分10
24秒前
缥缈的冰旋完成签到,获得积分10
24秒前
Ann完成签到,获得积分10
25秒前
善良的冷梅完成签到,获得积分10
25秒前
28秒前
28秒前
hou发布了新的文献求助10
29秒前
Dr.Joseph完成签到,获得积分10
30秒前
李虎完成签到 ,获得积分10
30秒前
manfullmoon完成签到,获得积分10
30秒前
zhentg完成签到,获得积分0
31秒前
今后应助科研通管家采纳,获得10
32秒前
汉堡包应助科研通管家采纳,获得10
32秒前
晓湫发布了新的文献求助20
32秒前
NexusExplorer应助科研通管家采纳,获得10
32秒前
32秒前
32秒前
田様应助科研通管家采纳,获得10
32秒前
量子星尘发布了新的文献求助10
33秒前
科研小白鼠完成签到,获得积分10
36秒前
斯文败类应助愉快的夜云采纳,获得10
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958130
求助须知:如何正确求助?哪些是违规求助? 3504312
关于积分的说明 11117892
捐赠科研通 3235623
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547