Representing Multimodal Behaviors With Mean Location for Pedestrian Trajectory Prediction

弹道 计算机科学 混合模型 多模态 人工智能 高斯分布 潜变量 模式识别(心理学) 机器学习 天文 量子力学 物理 万维网
作者
Liushuai Shi,Le Wang,Chengjiang Long,Sanping Zhou,Wei Tang,Nanning Zheng,Gang Hua
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (9): 11184-11202 被引量:13
标识
DOI:10.1109/tpami.2023.3268110
摘要

Representing multimodal behaviors is a critical challenge for pedestrian trajectory prediction. Previous methods commonly represent this multimodality with multiple latent variables repeatedly sampled from a latent space, encountering difficulties in interpretable trajectory prediction. Moreover, the latent space is usually built by encoding global interaction into future trajectory, which inevitably introduces superfluous interactions and thus leads to performance reduction. To tackle these issues, we propose a novel Interpretable Multimodality Predictor (IMP) for pedestrian trajectory prediction, whose core is to represent a specific mode by its mean location. We model the distribution of mean location as a Gaussian Mixture Model (GMM) conditioned on sparse spatio-temporal features, and sample multiple mean locations from the decoupled components of GMM to encourage multimodality. Our IMP brings four-fold benefits: 1) Interpretable prediction to provide semantics about the motion behavior of a specific mode; 2) Friendly visualization to present multimodal behaviors; 3) Well theoretical feasibility to estimate the distribution of mean locations supported by the central-limit theorem; 4) Effective sparse spatio-temporal features to reduce superfluous interactions and model temporal continuity of interaction. Extensive experiments validate that our IMP not only outperforms state-of-the-art methods but also can achieve a controllable prediction by customizing the corresponding mean location.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琉风完成签到,获得积分20
刚刚
1秒前
平常映雁完成签到,获得积分10
2秒前
2秒前
xzx完成签到 ,获得积分10
3秒前
老肖完成签到,获得积分10
3秒前
sumugeng完成签到,获得积分10
3秒前
5秒前
如意完成签到,获得积分10
6秒前
KingYH完成签到,获得积分10
6秒前
8秒前
周冯雪完成签到 ,获得积分10
10秒前
11秒前
廖天佑完成签到,获得积分10
11秒前
12秒前
curtainai完成签到,获得积分10
12秒前
after完成签到,获得积分10
13秒前
after发布了新的文献求助10
15秒前
蟒玉朝天发布了新的文献求助10
16秒前
16秒前
CC发布了新的文献求助10
17秒前
湉湉完成签到,获得积分10
19秒前
脑洞疼应助yoru16采纳,获得10
21秒前
sasaki完成签到,获得积分10
21秒前
虚幻的冰露完成签到 ,获得积分10
21秒前
蟒玉朝天完成签到,获得积分10
23秒前
超级冷松完成签到 ,获得积分10
25秒前
健壮台灯完成签到,获得积分10
25秒前
Hello应助科研小白采纳,获得30
28秒前
30秒前
31秒前
黑土完成签到 ,获得积分10
33秒前
Dr. LJ发布了新的文献求助10
33秒前
33秒前
先锋完成签到 ,获得积分10
34秒前
浮生完成签到,获得积分10
35秒前
小魔芋发布了新的文献求助10
35秒前
lr完成签到,获得积分20
36秒前
38秒前
40秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139996
求助须知:如何正确求助?哪些是违规求助? 2790894
关于积分的说明 7796961
捐赠科研通 2447258
什么是DOI,文献DOI怎么找? 1301779
科研通“疑难数据库(出版商)”最低求助积分说明 626340
版权声明 601194