Representing Multimodal Behaviors With Mean Location for Pedestrian Trajectory Prediction

弹道 计算机科学 混合模型 多模态 人工智能 高斯分布 潜变量 模式识别(心理学) 机器学习 天文 量子力学 物理 万维网
作者
Liushuai Shi,Le Wang,Chengjiang Long,Sanping Zhou,Wei Tang,Nanning Zheng,Gang Hua
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (9): 11184-11202 被引量:13
标识
DOI:10.1109/tpami.2023.3268110
摘要

Representing multimodal behaviors is a critical challenge for pedestrian trajectory prediction. Previous methods commonly represent this multimodality with multiple latent variables repeatedly sampled from a latent space, encountering difficulties in interpretable trajectory prediction. Moreover, the latent space is usually built by encoding global interaction into future trajectory, which inevitably introduces superfluous interactions and thus leads to performance reduction. To tackle these issues, we propose a novel Interpretable Multimodality Predictor (IMP) for pedestrian trajectory prediction, whose core is to represent a specific mode by its mean location. We model the distribution of mean location as a Gaussian Mixture Model (GMM) conditioned on sparse spatio-temporal features, and sample multiple mean locations from the decoupled components of GMM to encourage multimodality. Our IMP brings four-fold benefits: 1) Interpretable prediction to provide semantics about the motion behavior of a specific mode; 2) Friendly visualization to present multimodal behaviors; 3) Well theoretical feasibility to estimate the distribution of mean locations supported by the central-limit theorem; 4) Effective sparse spatio-temporal features to reduce superfluous interactions and model temporal continuity of interaction. Extensive experiments validate that our IMP not only outperforms state-of-the-art methods but also can achieve a controllable prediction by customizing the corresponding mean location.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XYT发布了新的文献求助10
刚刚
脑洞疼应助Luffy采纳,获得10
1秒前
科研通AI6应助小杰采纳,获得10
1秒前
今后应助TIPHA采纳,获得10
1秒前
Czvvvv完成签到 ,获得积分10
2秒前
2秒前
跳跃绿蓉完成签到,获得积分10
3秒前
SONG完成签到,获得积分10
3秒前
气味发布了新的文献求助10
3秒前
3秒前
粗心的邴发布了新的文献求助10
3秒前
star完成签到,获得积分10
3秒前
脑洞疼应助李希采纳,获得10
4秒前
4秒前
感动的溪灵完成签到,获得积分20
4秒前
浩铭完成签到,获得积分10
4秒前
zyn关闭了zyn文献求助
4秒前
莫虚发布了新的文献求助10
5秒前
www完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助150
5秒前
付威威完成签到,获得积分10
5秒前
岛屿发布了新的文献求助10
6秒前
调皮的问芙完成签到 ,获得积分10
6秒前
6秒前
大白沙子完成签到,获得积分10
6秒前
7秒前
橙橙橙橙完成签到,获得积分10
7秒前
丘比特应助毛毛弟采纳,获得10
7秒前
7秒前
no1isme完成签到 ,获得积分10
8秒前
8秒前
8秒前
9秒前
英勇的沛春完成签到 ,获得积分10
9秒前
隐形曼青应助孔大漂亮采纳,获得10
9秒前
丛士乔完成签到,获得积分10
9秒前
9秒前
kiki发布了新的文献求助30
10秒前
cooper完成签到 ,获得积分10
10秒前
HarryQ完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097188
求助须知:如何正确求助?哪些是违规求助? 4309756
关于积分的说明 13428112
捐赠科研通 4137185
什么是DOI,文献DOI怎么找? 2266508
邀请新用户注册赠送积分活动 1269609
关于科研通互助平台的介绍 1205917