Representing Multimodal Behaviors With Mean Location for Pedestrian Trajectory Prediction

弹道 计算机科学 混合模型 多模态 人工智能 高斯分布 潜变量 模式识别(心理学) 机器学习 天文 量子力学 物理 万维网
作者
Liushuai Shi,Le Wang,Chengjiang Long,Sanping Zhou,Wei Tang,Nanning Zheng,Gang Hua
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (9): 11184-11202 被引量:13
标识
DOI:10.1109/tpami.2023.3268110
摘要

Representing multimodal behaviors is a critical challenge for pedestrian trajectory prediction. Previous methods commonly represent this multimodality with multiple latent variables repeatedly sampled from a latent space, encountering difficulties in interpretable trajectory prediction. Moreover, the latent space is usually built by encoding global interaction into future trajectory, which inevitably introduces superfluous interactions and thus leads to performance reduction. To tackle these issues, we propose a novel Interpretable Multimodality Predictor (IMP) for pedestrian trajectory prediction, whose core is to represent a specific mode by its mean location. We model the distribution of mean location as a Gaussian Mixture Model (GMM) conditioned on sparse spatio-temporal features, and sample multiple mean locations from the decoupled components of GMM to encourage multimodality. Our IMP brings four-fold benefits: 1) Interpretable prediction to provide semantics about the motion behavior of a specific mode; 2) Friendly visualization to present multimodal behaviors; 3) Well theoretical feasibility to estimate the distribution of mean locations supported by the central-limit theorem; 4) Effective sparse spatio-temporal features to reduce superfluous interactions and model temporal continuity of interaction. Extensive experiments validate that our IMP not only outperforms state-of-the-art methods but also can achieve a controllable prediction by customizing the corresponding mean location.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
0029完成签到,获得积分10
2秒前
Aki完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
5秒前
LXR完成签到,获得积分10
7秒前
thchiang发布了新的文献求助10
8秒前
李健应助北城采纳,获得10
8秒前
WDK发布了新的文献求助10
8秒前
9秒前
轻松的贞发布了新的文献求助10
9秒前
医学生Mavis完成签到,获得积分10
11秒前
nextconnie完成签到,获得积分10
11秒前
汉堡包应助yyj采纳,获得10
12秒前
zqh740发布了新的文献求助30
13秒前
14秒前
NexusExplorer应助pharmstudent采纳,获得10
15秒前
熊遇蜜完成签到,获得积分10
17秒前
panzer完成签到,获得积分10
18秒前
19秒前
lyt发布了新的文献求助10
20秒前
六月毕业关注了科研通微信公众号
21秒前
petrichor应助程程采纳,获得10
22秒前
圆儿完成签到 ,获得积分10
22秒前
潇洒的灵萱完成签到,获得积分10
22秒前
22秒前
22秒前
Toooo完成签到,获得积分10
23秒前
zqh740完成签到,获得积分10
23秒前
科研通AI5应助thchiang采纳,获得10
23秒前
lizzzzzz完成签到,获得积分10
24秒前
yyj发布了新的文献求助10
24秒前
请和我吃饭完成签到,获得积分10
25秒前
北城发布了新的文献求助10
26秒前
勤恳冰淇淋完成签到 ,获得积分10
27秒前
29秒前
29秒前
清晏完成签到,获得积分10
30秒前
曲书文完成签到,获得积分10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824