手性(物理)
化学
超分子化学
酰胺
部分
立体化学
分子间力
结合位点
分子
有机化学
生物化学
夸克
Nambu–Jona Lasinio模型
手征对称破缺
量子力学
物理
作者
Laiben Gao,Xiaoqiu Dou,Chao Xing,Fengli Gao,Zichao Jiang,Kaikai Yang,Changli Zhao,Chuanliang Feng
标识
DOI:10.1002/anie.202303812
摘要
The induction of diverse chirality regulation in nature by multiple binding sites of biomolecules is ubiquitous and plays an essential role in determining the biofunction of biosystems. However, mimicking this biological phenomenon and understanding at a molecular level its mechanism with the multiple binding sites by establishing an artificial system still remains a challenge. Herein, abundant chirality inversion is achieved by precisely and multiply manipulating the co-assembled binding sites of phenylalanine derivatives (D/LPPF) with different naphthalene derivatives (NA, NC, NP, NF). The amide and hydroxy group of naphthalene derivatives prefer to bind with the carboxy group of LPPF, while carboxylic groups and fluoride atoms tend to bind with the amide moiety of LPPF. All these diverse interaction modes can precisely trigger helicity inversion of LPPF nanofibers. In addition, synergistically manipulating the carboxy and amide binding sites from a single LPPF molecule to simultaneously interact with different naphthalene derivatives leads to chirality regulation. Typically, varying the solvent may switch the interaction modes and the switched new interaction modes can be employed to further regulate the chirality of the LPPF nanofibers. This study may provide a novel approach to explore chirality diversity in artificial systems by regulating the intermolecular binding sites.
科研通智能强力驱动
Strongly Powered by AbleSci AI