Structural insights into electric field induced polarization and strain responses inK0.5Na0.5NbO3modified morphotropic phase boundary …

铁电性 物理 相界 凝聚态物理 结晶学 材料科学 相(物质) 电介质 化学 光电子学 量子力学
作者
Gobinda Das Adhikary,Gudeta Jafo Muleta,Getaw Abebe Tina,Deepak Sharma,Bhoopesh Mahale,Lucas Lemos da Silva,Manuel Hinterstein,Anatoliy Senyshyn,Rajeev Ranjan
出处
期刊:Physical review 卷期号:107 (13) 被引量:4
标识
DOI:10.1103/physrevb.107.134108
摘要

${\mathrm{K}}_{0.5}{\mathrm{Na}}_{0.5}\mathrm{Nb}{\mathrm{O}}_{3}$ (KNN)-modified morphotropic phase boundary (MPB) compositions of the two ${\mathrm{Na}}_{0.5}{\mathrm{Bi}}_{0.5}\mathrm{Ti}{\mathrm{O}}_{3}$-based lead-free piezoelectrics, namely, $0.94{\mathrm{Na}}_{0.5}{\mathrm{Bi}}_{0.5}\mathrm{Ti}{\mathrm{O}}_{3}\text{\ensuremath{-}}0.06\mathrm{BaTi}{\mathrm{O}}_{3}$ (NBT-6BT) and $0.80{\mathrm{Na}}_{0.5}{\mathrm{Bi}}_{0.5}\mathrm{Ti}{\mathrm{O}}_{3}\text{\ensuremath{-}}0.20{\mathrm{K}}_{0.5}{\mathrm{Bi}}_{0.5}\mathrm{Ti}{\mathrm{O}}_{3}$ (NBT-20KBT) are model systems exhibiting large $(>0.4%)$ electric-field-driven strain. There is a general perception that (i) increasing KNN concentration monotonically weakens the direct piezoelectric response $({d}_{33})$, and (ii) maximum electrostrain occurs when KNN pushes the system in the fully ergodic relaxor state. We have examined these issues using various complementary techniques involving electrostrain, piezoelectric coefficient $({d}_{33})$, ferroelectric switching-current measurements, and field-driven structural studies on the global and local scales using laboratory and synchrotron x-ray diffraction, neutron powder diffraction, and ${\mathrm{Eu}}^{+3}$ photoluminescence techniques. Our investigations revealed the following important features: (i) In the low-concentration regime, KNN induces a tetragonal ferroelectric distortion, which improves the weak signal piezoresponse. (ii) Beyond a threshold concentration, in-phase octahedral tilt sets in and weakens the long-range ferroelectric order to partially stabilize an ergodic state. (iii) The maximum electrostrain (\ensuremath{\sim}0.6%) is achieved in the mixed (nonergodic + ergodic) state. (iv) The mixed state invariably exhibits a less-known phenomenon of field-driven ferroelectric-to-relaxor transformation during bipolar field cycling. (v) The enhanced electrostrain in the mixed state is associated with the electric field increasing the correlation lengths of the short-ranged tetragonal and rhombohedral ferroelectric regions without overall transformation of one phase to the other. We summarize the findings of this work in a comprehensive electric field composition (E-x) phase diagram. The findings reported here are likely to be true for other NBT-based MPB systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Min发布了新的文献求助10
刚刚
1秒前
波西米亚发布了新的文献求助10
1秒前
Jordan发布了新的文献求助10
1秒前
2秒前
2秒前
隐形曼青应助王羊补牢采纳,获得10
4秒前
4秒前
rrrrrrry发布了新的文献求助10
5秒前
7秒前
丁一完成签到,获得积分10
8秒前
领导范儿应助遥感小虫采纳,获得10
8秒前
8秒前
华仔应助hmm采纳,获得10
8秒前
9秒前
9秒前
江月年发布了新的文献求助10
9秒前
打打应助懦弱的姝采纳,获得30
10秒前
Orange应助宅心仁厚采纳,获得10
10秒前
11秒前
11秒前
CipherSage应助lynn采纳,获得10
11秒前
时尚问安发布了新的文献求助10
12秒前
zxf发布了新的文献求助10
12秒前
22发布了新的文献求助10
12秒前
12秒前
万能图书馆应助文献采纳,获得10
12秒前
12秒前
酷波er应助圆脸妹妹采纳,获得10
13秒前
我爱Chem发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
一个橘子完成签到,获得积分10
14秒前
Orange应助沈星星采纳,获得10
15秒前
xiying发布了新的文献求助10
15秒前
符fu发布了新的文献求助10
15秒前
俊逸鸣凤完成签到,获得积分10
16秒前
pcr163应助li采纳,获得50
16秒前
鲤鱼安青发布了新的文献求助10
16秒前
高分求助中
Exploring Mitochondrial Autophagy Dysregulation in Osteosarcoma: Its Implications for Prognosis and Targeted Therapy 4000
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
Evolution 1100
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Research Methods for Sports Studies 1000
Eric Dunning and the Sociology of Sport 800
Gerard de Lairesse : an artist between stage and studio 670
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 化学工程 复合材料 遗传学 基因 催化作用 物理化学 免疫学 病理 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2977892
求助须知:如何正确求助?哪些是违规求助? 2639381
关于积分的说明 7117064
捐赠科研通 2272081
什么是DOI,文献DOI怎么找? 1205316
版权声明 591873
科研通“疑难数据库(出版商)”最低求助积分说明 589031