Rice disease segmentation method based on CBAM-CARAFE-DeepLabv3+

特征(语言学) 分割 人工智能 计算机科学 模式识别(心理学) 哲学 语言学
作者
Wei Zeng,Mingfang He
出处
期刊:Crop Protection [Elsevier BV]
卷期号:180: 106665-106665 被引量:9
标识
DOI:10.1016/j.cropro.2024.106665
摘要

Rice is an important food crop, but it is susceptible to diseases during its growth process. Rapid, accurate, and effective identification of rice diseases is important for targeted measures to control disease spread. It is crucial for improving rice yield and quality. Therefore, this study proposes a CBAM-CARAFE-DeepLabv3+ rice disease segmentation method that combines attention mechanisms and feature recombination. This method focuses on three common diseases in rice growth: bacterial blight, blast, and brown spot disease. To enhance the extraction of favorable features, the algorithm adopts CBAM-RepViT as the backbone network. That is, the Squeeze-and-Excitation (SE) attention mechanism embedded in the efficient and lightweight RepViT network is replaced by the lightweight Convolutional Block Attention Module (CBAM). Compared to the SE attention mechanism, CBAM introduces a spatial attention module that focuses on important spatial positions in the feature map. It allows the model to extract more rich and detailed feature information by attending to both the channel and spatial dimensions of the feature map. Additionally, to further improve the feature extraction ability and image edge segmentation accuracy during upsampling, the lightweight Content-Aware ReAssembly of FEatures (CARAFE) operator is introduced into the decoding module for upsampling. Finally, to address the issue of imbalance between foreground and background pixel ratios in rice disease, a hybrid loss function composed of cross-entropy (CE) loss and Dice loss is proposed. Experimental results show that, compared to other networks such as DeepLabv3+, the proposed CBAM-CARAFE-DeepLabv3+ method achieves further improvement in segmentation accuracy, providing a new method for the development of rice disease segmentation technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有魅力的臻完成签到,获得积分10
刚刚
刚刚
阿新完成签到,获得积分10
刚刚
开心罡完成签到,获得积分10
1秒前
cd发布了新的文献求助10
1秒前
wanci应助if采纳,获得10
2秒前
在路上应助俊逸兰谷采纳,获得10
2秒前
2秒前
隐形曼青应助邱鑫淼采纳,获得10
2秒前
Akim应助乐乐采纳,获得10
4秒前
Akim应助xx采纳,获得10
4秒前
4秒前
5秒前
Atropine发布了新的文献求助30
5秒前
oyu完成签到,获得积分10
6秒前
6秒前
李健发布了新的文献求助10
6秒前
自信项链发布了新的文献求助10
7秒前
2889580752发布了新的文献求助10
8秒前
9秒前
绕啊绕完成签到,获得积分10
9秒前
liangliang发布了新的文献求助10
9秒前
仁爱的侯千愁完成签到 ,获得积分10
10秒前
kd完成签到 ,获得积分10
10秒前
11秒前
11秒前
乐乐应助emm采纳,获得10
11秒前
xx完成签到,获得积分20
11秒前
11秒前
11秒前
12秒前
开放夜南完成签到,获得积分10
12秒前
大大大漂亮完成签到,获得积分10
13秒前
13秒前
ABB发布了新的文献求助30
14秒前
15秒前
lilian发布了新的文献求助10
15秒前
清脆的乌冬面完成签到,获得积分10
15秒前
LYSM应助Ir采纳,获得20
15秒前
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978526
求助须知:如何正确求助?哪些是违规求助? 3522634
关于积分的说明 11214133
捐赠科研通 3260065
什么是DOI,文献DOI怎么找? 1799744
邀请新用户注册赠送积分活动 878642
科研通“疑难数据库(出版商)”最低求助积分说明 807002