亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rice disease segmentation method based on CBAM-CARAFE-DeepLabv3+

特征(语言学) 分割 人工智能 计算机科学 模式识别(心理学) 哲学 语言学
作者
Wei Zeng,Mingfang He
出处
期刊:Crop Protection [Elsevier]
卷期号:180: 106665-106665 被引量:11
标识
DOI:10.1016/j.cropro.2024.106665
摘要

Rice is an important food crop, but it is susceptible to diseases during its growth process. Rapid, accurate, and effective identification of rice diseases is important for targeted measures to control disease spread. It is crucial for improving rice yield and quality. Therefore, this study proposes a CBAM-CARAFE-DeepLabv3+ rice disease segmentation method that combines attention mechanisms and feature recombination. This method focuses on three common diseases in rice growth: bacterial blight, blast, and brown spot disease. To enhance the extraction of favorable features, the algorithm adopts CBAM-RepViT as the backbone network. That is, the Squeeze-and-Excitation (SE) attention mechanism embedded in the efficient and lightweight RepViT network is replaced by the lightweight Convolutional Block Attention Module (CBAM). Compared to the SE attention mechanism, CBAM introduces a spatial attention module that focuses on important spatial positions in the feature map. It allows the model to extract more rich and detailed feature information by attending to both the channel and spatial dimensions of the feature map. Additionally, to further improve the feature extraction ability and image edge segmentation accuracy during upsampling, the lightweight Content-Aware ReAssembly of FEatures (CARAFE) operator is introduced into the decoding module for upsampling. Finally, to address the issue of imbalance between foreground and background pixel ratios in rice disease, a hybrid loss function composed of cross-entropy (CE) loss and Dice loss is proposed. Experimental results show that, compared to other networks such as DeepLabv3+, the proposed CBAM-CARAFE-DeepLabv3+ method achieves further improvement in segmentation accuracy, providing a new method for the development of rice disease segmentation technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣怡发布了新的文献求助10
3秒前
8秒前
平淡剑鬼发布了新的文献求助10
11秒前
muuuu发布了新的文献求助30
13秒前
田様应助超级野狼采纳,获得10
13秒前
舒适续发布了新的文献求助30
14秒前
16秒前
无私白风完成签到,获得积分10
17秒前
卞兰完成签到,获得积分10
19秒前
大个应助欣怡采纳,获得10
20秒前
zsmj23完成签到 ,获得积分0
20秒前
喜悦的小土豆完成签到 ,获得积分10
27秒前
30秒前
31秒前
cm关闭了cm文献求助
31秒前
舒适续完成签到,获得积分10
33秒前
超级野狼发布了新的文献求助10
34秒前
危笑发布了新的文献求助20
37秒前
39秒前
Tine完成签到,获得积分10
41秒前
Tine发布了新的文献求助10
44秒前
smm完成签到 ,获得积分10
44秒前
科研通AI6.1应助muuuu采纳,获得30
44秒前
不摇碧莲完成签到 ,获得积分10
44秒前
46秒前
47秒前
三岁完成签到 ,获得积分10
50秒前
50秒前
light111发布了新的文献求助10
51秒前
传统的丹雪完成签到,获得积分10
51秒前
52秒前
53秒前
SIKI发布了新的文献求助10
55秒前
小羊要努力完成签到,获得积分10
56秒前
李同学发布了新的文献求助30
57秒前
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754644
求助须知:如何正确求助?哪些是违规求助? 5488236
关于积分的说明 15380380
捐赠科研通 4893172
什么是DOI,文献DOI怎么找? 2631766
邀请新用户注册赠送积分活动 1579709
关于科研通互助平台的介绍 1535463