清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Agile earth observation satellite constellations scheduling for large area target imaging using heuristic search

计算机科学 调度(生产过程) 敏捷软件开发 卫星 启发式 地球观测卫星 数学优化 分布式计算 实时计算 人工智能 数学 航空航天工程 工程类 软件工程
作者
Radhika Kandepi,Himani Saini,Raju K. George,Subbarao Konduri,Ritu Karidhal
出处
期刊:Acta Astronautica [Elsevier BV]
卷期号:219: 670-677 被引量:2
标识
DOI:10.1016/j.actaastro.2024.03.027
摘要

Demand for imaging of large area targets by space-based assets such as constellations of Earth Observation Satellites (EOS) is on the rise for different applications. The area targets coverage cannot be achieved by a single satellite in a single observation opportunity, as the region for imaging spreads wider than the coverage swaths of imaging sensors. Hence, the imaging satellites are scheduled in a cooperative way to achieve maximum coverage of the area in a given planning time horizon. The scheduling algorithms also aim to maximize or minimize some specific objectives of interest while simultaneously complying with all resource constraints for an efficient use of precious space resources. As the current generation satellites are highly agile, there are many ways of choosing an imaging location in the target area for each single observation opportunity of a satellite. Even though the possible imaging region in continuous space is discretized into a finite number of strips for each observation, the huge combinatorial search space formed with all satellites' imaging opportunities makes the problem intractable. Thus, the area target imaging scheduling is a complex combinatorial NP-hard optimization problem. Many exact and heuristic methods were evolved to provide a solution to this scheduling problem. Even though the exact methods solve the problem to optimality, they are limited to smaller problem instances because of the high computational complexities involved in those methods. More focus is seen in the literature on heuristic approaches as they guarantee scheduling performance with feasible solutions within an acceptable computational complexity. This paper presents our efficient heuristic approach proposed for the scheduling problem for imaging a large area target using a constellation of multiple satellites. Our approach is an extension of a widely used greedy approach in combination with insights from dynamic programming. In this paper, first we addressed the scheduling problem by describing it in detail and formulating it into a non-linear integer programming problem, considering the multi-objectives of achieving maximum coverage and minimum imaging resolution. The solution to the problem comprises two phases, namely the area decomposition phase and the scheduling phase. In the area decomposition phase, the area target is divided into strips dynamically for each observation opportunity of a satellite. Then exact observation period of each strip is computed using a simplified semi-analytical computational method. In the scheduling phase, we applied our heuristic search strategy, namely Forward and Backward Heuristic Search (FBHS) to obtain a near optimal solution within an acceptable computational time. Through the extensive simulations conducted under various scenarios, the effectiveness of the proposed method is verified in comparison with the baseline greedy approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
六一儿童节完成签到 ,获得积分10
4秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
42秒前
50秒前
P1gy发布了新的文献求助100
55秒前
胜胜糖完成签到 ,获得积分10
56秒前
亿亿亿亿发布了新的文献求助30
58秒前
打打应助JA采纳,获得10
1分钟前
笨笨完成签到 ,获得积分10
1分钟前
亿亿亿亿发布了新的文献求助10
1分钟前
m李完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
沈惠映完成签到 ,获得积分10
1分钟前
tulips完成签到 ,获得积分10
1分钟前
望向天空的鱼完成签到 ,获得积分10
1分钟前
亿亿亿亿发布了新的文献求助10
2分钟前
2分钟前
2分钟前
JA发布了新的文献求助10
2分钟前
亿亿亿亿发布了新的文献求助10
2分钟前
柒八染完成签到 ,获得积分10
2分钟前
Sandy应助科研通管家采纳,获得80
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
雪山飞龙发布了新的文献求助10
2分钟前
研友_GZ3zRn完成签到 ,获得积分0
2分钟前
赘婿应助P1gy采纳,获得100
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
徐团伟完成签到 ,获得积分10
3分钟前
3分钟前
奔跑的小熊完成签到 ,获得积分10
3分钟前
puhong zhang完成签到,获得积分10
3分钟前
4分钟前
vvvaee完成签到 ,获得积分10
4分钟前
开心每一天完成签到 ,获得积分10
4分钟前
梨子茶发布了新的文献求助30
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960142
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128805
捐赠科研通 3238345
什么是DOI,文献DOI怎么找? 1789709
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069