Agile earth observation satellite constellations scheduling for large area target imaging using heuristic search

计算机科学 调度(生产过程) 敏捷软件开发 卫星 启发式 地球观测卫星 数学优化 分布式计算 实时计算 人工智能 数学 航空航天工程 工程类 软件工程
作者
Radhika Kandepi,Himani Saini,Raju K. George,Subbarao Konduri,Ritu Karidhal
出处
期刊:Acta Astronautica [Elsevier]
卷期号:219: 670-677 被引量:2
标识
DOI:10.1016/j.actaastro.2024.03.027
摘要

Demand for imaging of large area targets by space-based assets such as constellations of Earth Observation Satellites (EOS) is on the rise for different applications. The area targets coverage cannot be achieved by a single satellite in a single observation opportunity, as the region for imaging spreads wider than the coverage swaths of imaging sensors. Hence, the imaging satellites are scheduled in a cooperative way to achieve maximum coverage of the area in a given planning time horizon. The scheduling algorithms also aim to maximize or minimize some specific objectives of interest while simultaneously complying with all resource constraints for an efficient use of precious space resources. As the current generation satellites are highly agile, there are many ways of choosing an imaging location in the target area for each single observation opportunity of a satellite. Even though the possible imaging region in continuous space is discretized into a finite number of strips for each observation, the huge combinatorial search space formed with all satellites' imaging opportunities makes the problem intractable. Thus, the area target imaging scheduling is a complex combinatorial NP-hard optimization problem. Many exact and heuristic methods were evolved to provide a solution to this scheduling problem. Even though the exact methods solve the problem to optimality, they are limited to smaller problem instances because of the high computational complexities involved in those methods. More focus is seen in the literature on heuristic approaches as they guarantee scheduling performance with feasible solutions within an acceptable computational complexity. This paper presents our efficient heuristic approach proposed for the scheduling problem for imaging a large area target using a constellation of multiple satellites. Our approach is an extension of a widely used greedy approach in combination with insights from dynamic programming. In this paper, first we addressed the scheduling problem by describing it in detail and formulating it into a non-linear integer programming problem, considering the multi-objectives of achieving maximum coverage and minimum imaging resolution. The solution to the problem comprises two phases, namely the area decomposition phase and the scheduling phase. In the area decomposition phase, the area target is divided into strips dynamically for each observation opportunity of a satellite. Then exact observation period of each strip is computed using a simplified semi-analytical computational method. In the scheduling phase, we applied our heuristic search strategy, namely Forward and Backward Heuristic Search (FBHS) to obtain a near optimal solution within an acceptable computational time. Through the extensive simulations conducted under various scenarios, the effectiveness of the proposed method is verified in comparison with the baseline greedy approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
光亮的依凝完成签到,获得积分10
刚刚
BallQ完成签到,获得积分10
刚刚
zzj完成签到,获得积分10
刚刚
FashionBoy应助Roachw采纳,获得10
1秒前
姜恒发布了新的文献求助10
1秒前
benzene完成签到 ,获得积分10
1秒前
yanzilin发布了新的文献求助10
1秒前
苏素肃发布了新的文献求助10
2秒前
qifei完成签到 ,获得积分10
2秒前
舍瓦完成签到,获得积分10
3秒前
why完成签到,获得积分10
3秒前
木林森发布了新的文献求助10
3秒前
烂漫凡柔发布了新的文献求助10
3秒前
传奇3应助22采纳,获得10
4秒前
胡晓平完成签到,获得积分10
5秒前
Summer完成签到,获得积分10
5秒前
鲤鱼雨泽完成签到,获得积分10
5秒前
wzhnb完成签到,获得积分10
6秒前
nojego完成签到,获得积分10
6秒前
倩倩完成签到,获得积分10
6秒前
hhh完成签到 ,获得积分10
6秒前
苏苏完成签到 ,获得积分10
6秒前
ShanYexia完成签到,获得积分10
7秒前
星辰大海应助轻松豌豆采纳,获得10
7秒前
xyj完成签到,获得积分10
7秒前
上官若男应助jinzhituoyan采纳,获得10
8秒前
李健的小迷弟应助wzhnb采纳,获得10
10秒前
11秒前
WZL完成签到,获得积分10
11秒前
xiekunwhy完成签到,获得积分10
11秒前
大魔王完成签到 ,获得积分10
12秒前
啤酒半斤完成签到,获得积分10
12秒前
13秒前
淡然冬灵发布了新的文献求助10
13秒前
Ming完成签到,获得积分10
15秒前
durance完成签到,获得积分10
15秒前
tiger完成签到,获得积分10
15秒前
西因应助小新麻麻采纳,获得10
16秒前
九月发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600162
求助须知:如何正确求助?哪些是违规求助? 4685887
关于积分的说明 14840244
捐赠科研通 4675397
什么是DOI,文献DOI怎么找? 2538559
邀请新用户注册赠送积分活动 1505689
关于科研通互助平台的介绍 1471144