Low-power, non-coherent light-triggered two-photon absorption via extending the lifetime of the transition state

化学 双光子吸收 吸收(声学) 双光子激发显微术 光子 国家(计算机科学) 光化学 光电子学 光学 激光器 荧光 物理 算法 计算机科学
作者
Le Zeng,Xiangyu Wang,Na Li,Jiandong Pang,Xian‐He Bu
出处
期刊:Coordination Chemistry Reviews [Elsevier BV]
卷期号:511: 215868-215868 被引量:6
标识
DOI:10.1016/j.ccr.2024.215868
摘要

Materials with multi-photon absorption (MPA) feature, are highly desirable for applications such as deep-seated tumor treatment, high spatiotemporal resolution bioimaging, sophisticated micro-nano fabrication, optical data storage, frequency-upconverting laser, and optical limiting. The classical two-photon absorption (TPA) process relies on an extremely short-lived virtue state, leading to the requirement of an ultrahigh power density of femtosecond pulsed laser. To break this application barrier, the key solution is to extending the lifetime of the transition state in TPA. Recently, the operation of TPA with low-power non-coherent excitation (LPNC-TPA) was achieved by leveraging the mono-reduced species (such as radical anion) and the triplet excited state of dye molecules as the transition state with a relatively long lifetime. In this review, the mechanism of these LPNC-TPA processes will first be introduced, followed by the approaches to extend the lifetime of the mono-reduced species and the triplet state. Then, considering its ability to tune the aggregation mode of dye molecules, the metal–organic framework (MOF) will be emphasized as an efficient tool to operate efficient LPNC-TPA in the solid state. The merits and features of LPNC-TPA materials will be revealed through their emerging applications in photoredox catalysis, photopolymerization, 3D printing, in vivo cancer treatment, bioimaging, and biosensing. Finally, the future directions and challenges of LPNC-TPA are proposed, along with the possible solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
samara发布了新的文献求助10
3秒前
ding应助小八统治世界采纳,获得10
3秒前
6秒前
6秒前
淡然靖柔发布了新的文献求助10
6秒前
Bear完成签到,获得积分10
7秒前
8秒前
9秒前
10秒前
chl发布了新的文献求助10
10秒前
走着完成签到,获得积分10
12秒前
毛毛酱发布了新的文献求助30
13秒前
14秒前
14秒前
15秒前
阴森女公爵关注了科研通微信公众号
15秒前
尼克的朱迪完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
ttg990720发布了新的文献求助10
17秒前
18秒前
18秒前
有魅力强炫完成签到,获得积分10
18秒前
周涛完成签到,获得积分10
18秒前
zhouti497541171完成签到,获得积分10
20秒前
光翟君发布了新的文献求助10
20秒前
斯文明杰发布了新的文献求助10
21秒前
22秒前
22秒前
爆米花应助泠泠泠萘采纳,获得10
22秒前
郭靖发布了新的文献求助10
22秒前
万能图书馆应助老jia采纳,获得10
22秒前
隐形曼青应助Li梨采纳,获得10
23秒前
李健应助贾晓丽采纳,获得10
24秒前
科研通AI5应助chenlixin采纳,获得10
24秒前
1111完成签到 ,获得积分10
24秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633192
求助须知:如何正确求助?哪些是违规求助? 4029241
关于积分的说明 12466657
捐赠科研通 3715470
什么是DOI,文献DOI怎么找? 2050148
邀请新用户注册赠送积分活动 1081735
科研通“疑难数据库(出版商)”最低求助积分说明 964033