亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Low-power, non-coherent light-triggered two-photon absorption via extending the lifetime of the transition state

化学 双光子吸收 吸收(声学) 双光子激发显微术 光子 国家(计算机科学) 光化学 光电子学 光学 激光器 荧光 物理 算法 计算机科学
作者
Le Zeng,Xiangyu Wang,Na Li,Jiandong Pang,Xian‐He Bu
出处
期刊:Coordination Chemistry Reviews [Elsevier]
卷期号:511: 215868-215868 被引量:10
标识
DOI:10.1016/j.ccr.2024.215868
摘要

Materials with multi-photon absorption (MPA) feature, are highly desirable for applications such as deep-seated tumor treatment, high spatiotemporal resolution bioimaging, sophisticated micro-nano fabrication, optical data storage, frequency-upconverting laser, and optical limiting. The classical two-photon absorption (TPA) process relies on an extremely short-lived virtue state, leading to the requirement of an ultrahigh power density of femtosecond pulsed laser. To break this application barrier, the key solution is to extending the lifetime of the transition state in TPA. Recently, the operation of TPA with low-power non-coherent excitation (LPNC-TPA) was achieved by leveraging the mono-reduced species (such as radical anion) and the triplet excited state of dye molecules as the transition state with a relatively long lifetime. In this review, the mechanism of these LPNC-TPA processes will first be introduced, followed by the approaches to extend the lifetime of the mono-reduced species and the triplet state. Then, considering its ability to tune the aggregation mode of dye molecules, the metal–organic framework (MOF) will be emphasized as an efficient tool to operate efficient LPNC-TPA in the solid state. The merits and features of LPNC-TPA materials will be revealed through their emerging applications in photoredox catalysis, photopolymerization, 3D printing, in vivo cancer treatment, bioimaging, and biosensing. Finally, the future directions and challenges of LPNC-TPA are proposed, along with the possible solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
甜甜纸飞机完成签到 ,获得积分10
12秒前
Eileen完成签到 ,获得积分0
14秒前
甜甜的紫菜完成签到 ,获得积分10
37秒前
51秒前
xiaozou55完成签到 ,获得积分10
1分钟前
1分钟前
ajing完成签到,获得积分10
2分钟前
2分钟前
阿泽完成签到,获得积分10
2分钟前
2分钟前
2分钟前
ralloz完成签到,获得积分10
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
学习使勇哥进步完成签到,获得积分10
2分钟前
哗啦啦啦发布了新的文献求助10
3分钟前
3分钟前
万能图书馆应助McUltrman采纳,获得30
4分钟前
4分钟前
4分钟前
4分钟前
McUltrman发布了新的文献求助30
4分钟前
McUltrman完成签到,获得积分10
4分钟前
哗啦啦啦完成签到,获得积分10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
5分钟前
loopy发布了新的文献求助10
5分钟前
纯真的冰蓝完成签到,获得积分10
5分钟前
丘比特应助纯真的冰蓝采纳,获得10
5分钟前
MchemG举报欢呼洋葱求助涉嫌违规
5分钟前
5分钟前
森森发布了新的文献求助10
5分钟前
notfound完成签到,获得积分10
5分钟前
6分钟前
现代丹亦发布了新的文献求助10
6分钟前
爆米花应助小李老博采纳,获得10
6分钟前
Atopos发布了新的文献求助30
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564965
求助须知:如何正确求助?哪些是违规求助? 4649714
关于积分的说明 14689286
捐赠科研通 4591604
什么是DOI,文献DOI怎么找? 2519322
邀请新用户注册赠送积分活动 1491903
关于科研通互助平台的介绍 1462973