Application of machine learning to analyze ozone sensitivity to influencing factors: A case study in Nanjing, China

环境科学 臭氧 氮氧化物 气象学 灵敏度(控制系统) 梯度升压 污染 地面臭氧 大气科学 计算机科学 化学 机器学习 工程类 随机森林 地理 燃烧 生态学 电子工程 有机化学 地质学 生物
作者
Chenwu Zhang,Xie Yu-min,Min Shao,Qin’geng Wang
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:929: 172544-172544 被引量:9
标识
DOI:10.1016/j.scitotenv.2024.172544
摘要

Ground-level ozone (O3) has been an emerging concern in China. Due to its complicated formation mechanisms, understanding the effects of influencing factors is critical for making effective efforts on the pollution control. This study aims to present and demonstrate the practicality of a data-driven technique that applies a machine learning (ML) model coupled with the SHapley Additive exPlanations (SHAP) approach in O3 simulation and sensitivity analysis. Based on hourly measured concentrations of O3 and its major precursors, as well as meteorological factors in a northern area of Nanjing, China, a Light Gradient Boosting Machine (LightGBM) model was established to simulate O3 concentrations in different seasons, and the SHAP approach was applied to conduct in-depth analysis on the impacts of influencing factors on O3 formation. The results indicated a reliable performance of the ML model in simulating O3 concentrations, with the coefficient of determination (R2) between the measured and simulated larger than 0.80, and the impacts of influencing factors were reasonably evaluated by the SHAP approach on both seasonal and diurnal time scales. It was found that although volatile organic compounds (VOCs) and nitrogen oxides (NOx), as well as temperature and relative humidity, were generally the main influencing factors, their sensitivities to O3 formation varied significantly in different seasons and with time of the day. This study suggests that the data-driven ML model is a practicable technique and may act as an alternative way to perform mechanism analysis to some extent, and has immense potential to be applied in both problem research and decision-making for air pollution control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枵蕾发布了新的文献求助10
刚刚
ZXCVB发布了新的文献求助20
刚刚
1秒前
3秒前
3秒前
3秒前
萌酱发布了新的文献求助10
4秒前
4秒前
Francisco2333完成签到,获得积分10
4秒前
kapuxinxin完成签到,获得积分10
4秒前
啦啦啦啦发布了新的文献求助10
5秒前
banana完成签到,获得积分10
6秒前
6秒前
称心映萱发布了新的文献求助10
6秒前
Dean发布了新的文献求助10
7秒前
qinsi15发布了新的文献求助10
7秒前
慕青应助arong采纳,获得10
7秒前
8秒前
牛马发布了新的文献求助10
8秒前
9秒前
恰同学少年完成签到,获得积分10
9秒前
mmj发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
Hzyyyyyyyyy发布了新的文献求助10
11秒前
浮游应助啦啦啦啦采纳,获得10
11秒前
星辰大海应助啦啦啦啦采纳,获得10
11秒前
11秒前
12秒前
13秒前
14秒前
medmh发布了新的文献求助10
14秒前
科研通AI5应助罗斯采纳,获得10
14秒前
彭于晏应助繁荣的寻芹采纳,获得10
14秒前
puchang007发布了新的文献求助10
15秒前
乐研客发布了新的文献求助10
15秒前
萌酱完成签到,获得积分10
16秒前
Francisco2333发布了新的文献求助10
16秒前
DG发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
Wolbachia-mediated fitness enhancement and reproductive manipulation in the South American tomato pinworm, Tuta absoluta 400
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
MARCH'S ADVANCED ORGANIC CHEMISTRY REACTIONS, MECHANISMS, AND STRUCTURE 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5102029
求助须知:如何正确求助?哪些是违规求助? 4313278
关于积分的说明 13439364
捐赠科研通 4141198
什么是DOI,文献DOI怎么找? 2269056
邀请新用户注册赠送积分活动 1271754
关于科研通互助平台的介绍 1208159