Application of machine learning to analyze ozone sensitivity to influencing factors: A case study in Nanjing, China

环境科学 臭氧 氮氧化物 气象学 灵敏度(控制系统) 梯度升压 污染 地面臭氧 大气科学 计算机科学 化学 机器学习 工程类 随机森林 地理 燃烧 生态学 电子工程 有机化学 地质学 生物
作者
Chenwu Zhang,Xie Yu-min,Min Shao,Qin’geng Wang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:929: 172544-172544 被引量:16
标识
DOI:10.1016/j.scitotenv.2024.172544
摘要

Ground-level ozone (O3) has been an emerging concern in China. Due to its complicated formation mechanisms, understanding the effects of influencing factors is critical for making effective efforts on the pollution control. This study aims to present and demonstrate the practicality of a data-driven technique that applies a machine learning (ML) model coupled with the SHapley Additive exPlanations (SHAP) approach in O3 simulation and sensitivity analysis. Based on hourly measured concentrations of O3 and its major precursors, as well as meteorological factors in a northern area of Nanjing, China, a Light Gradient Boosting Machine (LightGBM) model was established to simulate O3 concentrations in different seasons, and the SHAP approach was applied to conduct in-depth analysis on the impacts of influencing factors on O3 formation. The results indicated a reliable performance of the ML model in simulating O3 concentrations, with the coefficient of determination (R2) between the measured and simulated larger than 0.80, and the impacts of influencing factors were reasonably evaluated by the SHAP approach on both seasonal and diurnal time scales. It was found that although volatile organic compounds (VOCs) and nitrogen oxides (NOx), as well as temperature and relative humidity, were generally the main influencing factors, their sensitivities to O3 formation varied significantly in different seasons and with time of the day. This study suggests that the data-driven ML model is a practicable technique and may act as an alternative way to perform mechanism analysis to some extent, and has immense potential to be applied in both problem research and decision-making for air pollution control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Juvianne发布了新的文献求助10
刚刚
刚刚
刚刚
无辜的丹雪应助惠1采纳,获得30
1秒前
1秒前
CipherSage应助111采纳,获得10
2秒前
Owen应助111采纳,获得10
2秒前
甜蜜寄文发布了新的文献求助10
2秒前
2秒前
guangshuang发布了新的文献求助10
3秒前
慕青应助xc采纳,获得30
3秒前
韩修杰发布了新的文献求助10
4秒前
4秒前
lyl发布了新的文献求助10
5秒前
5秒前
coin完成签到,获得积分10
5秒前
呆一起完成签到,获得积分10
6秒前
6秒前
Hiiiiii完成签到,获得积分10
6秒前
6秒前
6秒前
SciGPT应助聪慧若风采纳,获得10
6秒前
7秒前
zwl发布了新的文献求助10
8秒前
朴素剑心发布了新的文献求助10
8秒前
Magic1987发布了新的文献求助30
8秒前
9秒前
9秒前
科研民工完成签到,获得积分10
9秒前
9秒前
古德day发布了新的文献求助10
10秒前
等风来LYY完成签到,获得积分10
10秒前
11秒前
guangshuang完成签到,获得积分10
12秒前
威武白桃发布了新的文献求助10
12秒前
12秒前
12秒前
111完成签到 ,获得积分10
13秒前
牧长一完成签到 ,获得积分0
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901