Application of machine learning to analyze ozone sensitivity to influencing factors: A case study in Nanjing, China

环境科学 臭氧 氮氧化物 气象学 灵敏度(控制系统) 梯度升压 污染 地面臭氧 大气科学 计算机科学 化学 机器学习 工程类 随机森林 地理 燃烧 生态学 电子工程 有机化学 地质学 生物
作者
Chenwu Zhang,Xie Yu-min,Min Shao,Qin’geng Wang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:929: 172544-172544 被引量:16
标识
DOI:10.1016/j.scitotenv.2024.172544
摘要

Ground-level ozone (O3) has been an emerging concern in China. Due to its complicated formation mechanisms, understanding the effects of influencing factors is critical for making effective efforts on the pollution control. This study aims to present and demonstrate the practicality of a data-driven technique that applies a machine learning (ML) model coupled with the SHapley Additive exPlanations (SHAP) approach in O3 simulation and sensitivity analysis. Based on hourly measured concentrations of O3 and its major precursors, as well as meteorological factors in a northern area of Nanjing, China, a Light Gradient Boosting Machine (LightGBM) model was established to simulate O3 concentrations in different seasons, and the SHAP approach was applied to conduct in-depth analysis on the impacts of influencing factors on O3 formation. The results indicated a reliable performance of the ML model in simulating O3 concentrations, with the coefficient of determination (R2) between the measured and simulated larger than 0.80, and the impacts of influencing factors were reasonably evaluated by the SHAP approach on both seasonal and diurnal time scales. It was found that although volatile organic compounds (VOCs) and nitrogen oxides (NOx), as well as temperature and relative humidity, were generally the main influencing factors, their sensitivities to O3 formation varied significantly in different seasons and with time of the day. This study suggests that the data-driven ML model is a practicable technique and may act as an alternative way to perform mechanism analysis to some extent, and has immense potential to be applied in both problem research and decision-making for air pollution control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
人工智能小配方完成签到,获得积分10
1秒前
小五完成签到 ,获得积分20
2秒前
云无意发布了新的文献求助10
2秒前
黑豆子完成签到,获得积分10
3秒前
4秒前
Paul111完成签到,获得积分10
5秒前
jzt12138发布了新的文献求助10
6秒前
6秒前
青青闭上眼睛完成签到,获得积分10
8秒前
8秒前
英姑应助fufu采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
大豆子完成签到,获得积分10
12秒前
浮游应助青青闭上眼睛采纳,获得10
12秒前
12秒前
王贤平发布了新的文献求助10
12秒前
13秒前
15秒前
万能图书馆应助清脆安南采纳,获得10
15秒前
天真苑睐完成签到,获得积分10
16秒前
Leo完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
Azure完成签到,获得积分10
17秒前
Akim应助美好斓采纳,获得10
20秒前
遇见发布了新的文献求助10
20秒前
小豆子完成签到,获得积分10
22秒前
Jane完成签到 ,获得积分10
24秒前
25秒前
25秒前
27秒前
TL111发布了新的文献求助10
27秒前
27秒前
wsd关闭了wsd文献求助
28秒前
boaster完成签到,获得积分10
28秒前
29秒前
gsq完成签到,获得积分10
31秒前
热情的未来完成签到,获得积分10
32秒前
红豆子完成签到,获得积分10
32秒前
0000完成签到,获得积分10
32秒前
清脆安南发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109