Application of machine learning to analyze ozone sensitivity to influencing factors: A case study in Nanjing, China

环境科学 臭氧 氮氧化物 气象学 灵敏度(控制系统) 梯度升压 污染 地面臭氧 大气科学 计算机科学 化学 机器学习 工程类 随机森林 地理 燃烧 生态学 电子工程 有机化学 地质学 生物
作者
Chenwu Zhang,Xie Yu-min,Min Shao,Qin’geng Wang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:929: 172544-172544 被引量:1
标识
DOI:10.1016/j.scitotenv.2024.172544
摘要

Ground-level ozone (O3) has been an emerging concern in China. Due to its complicated formation mechanisms, understanding the effects of influencing factors is critical for making effective efforts on the pollution control. This study aims to present and demonstrate the practicality of a data-driven technique that applies a machine learning (ML) model coupled with the SHapley Additive exPlanations (SHAP) approach in O3 simulation and sensitivity analysis. Based on hourly measured concentrations of O3 and its major precursors, as well as meteorological factors in a northern area of Nanjing, China, a Light Gradient Boosting Machine (LightGBM) model was established to simulate O3 concentrations in different seasons, and the SHAP approach was applied to conduct in-depth analysis on the impacts of influencing factors on O3 formation. The results indicated a reliable performance of the ML model in simulating O3 concentrations, with the coefficient of determination (R2) between the measured and simulated larger than 0.80, and the impacts of influencing factors were reasonably evaluated by the SHAP approach on both seasonal and diurnal time scales. It was found that although volatile organic compounds (VOCs) and nitrogen oxides (NOx), as well as temperature and relative humidity, were generally the main influencing factors, their sensitivities to O3 formation varied significantly in different seasons and with time of the day. This study suggests that the data-driven ML model is a practicable technique and may act as an alternative way to perform mechanism analysis to some extent, and has immense potential to be applied in both problem research and decision-making for air pollution control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cataphyll完成签到 ,获得积分10
刚刚
刚刚
yuqian发布了新的文献求助10
2秒前
2秒前
3秒前
xinanan完成签到,获得积分10
4秒前
4秒前
MARS发布了新的文献求助10
4秒前
itachi完成签到,获得积分10
5秒前
5秒前
成就的书包完成签到,获得积分10
7秒前
ssl完成签到 ,获得积分10
9秒前
云隐发布了新的文献求助10
9秒前
Youtenter发布了新的文献求助20
13秒前
yy122发布了新的文献求助10
16秒前
16秒前
caitlin完成签到 ,获得积分10
16秒前
小奇完成签到,获得积分10
17秒前
yuqian完成签到,获得积分20
20秒前
林齐完成签到 ,获得积分10
21秒前
星星完成签到,获得积分10
21秒前
冷酷的闹闹完成签到 ,获得积分10
21秒前
22秒前
23秒前
蔡从安完成签到,获得积分20
25秒前
Akim应助史娣采纳,获得10
25秒前
研友_VZG7GZ应助112233采纳,获得10
27秒前
28秒前
29秒前
yy122完成签到,获得积分10
30秒前
sxc发布了新的文献求助20
30秒前
31秒前
FashionBoy应助明亮随阴采纳,获得10
31秒前
大个应助Youtenter采纳,获得20
32秒前
侃侃完成签到,获得积分10
34秒前
立军发布了新的文献求助10
35秒前
酷波er应助apiaji采纳,获得10
36秒前
36秒前
王王的狗子完成签到 ,获得积分10
39秒前
mmyhn发布了新的文献求助10
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143695
求助须知:如何正确求助?哪些是违规求助? 2795199
关于积分的说明 7813564
捐赠科研通 2451202
什么是DOI,文献DOI怎么找? 1304353
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601393