Application of machine learning to analyze ozone sensitivity to influencing factors: A case study in Nanjing, China

环境科学 臭氧 氮氧化物 气象学 灵敏度(控制系统) 梯度升压 污染 地面臭氧 大气科学 计算机科学 化学 机器学习 工程类 随机森林 地理 燃烧 生态学 电子工程 有机化学 地质学 生物
作者
Chenwu Zhang,Xie Yu-min,Min Shao,Qin’geng Wang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:929: 172544-172544 被引量:16
标识
DOI:10.1016/j.scitotenv.2024.172544
摘要

Ground-level ozone (O3) has been an emerging concern in China. Due to its complicated formation mechanisms, understanding the effects of influencing factors is critical for making effective efforts on the pollution control. This study aims to present and demonstrate the practicality of a data-driven technique that applies a machine learning (ML) model coupled with the SHapley Additive exPlanations (SHAP) approach in O3 simulation and sensitivity analysis. Based on hourly measured concentrations of O3 and its major precursors, as well as meteorological factors in a northern area of Nanjing, China, a Light Gradient Boosting Machine (LightGBM) model was established to simulate O3 concentrations in different seasons, and the SHAP approach was applied to conduct in-depth analysis on the impacts of influencing factors on O3 formation. The results indicated a reliable performance of the ML model in simulating O3 concentrations, with the coefficient of determination (R2) between the measured and simulated larger than 0.80, and the impacts of influencing factors were reasonably evaluated by the SHAP approach on both seasonal and diurnal time scales. It was found that although volatile organic compounds (VOCs) and nitrogen oxides (NOx), as well as temperature and relative humidity, were generally the main influencing factors, their sensitivities to O3 formation varied significantly in different seasons and with time of the day. This study suggests that the data-driven ML model is a practicable technique and may act as an alternative way to perform mechanism analysis to some extent, and has immense potential to be applied in both problem research and decision-making for air pollution control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hayin完成签到 ,获得积分10
1秒前
享受不良诱惑完成签到,获得积分10
2秒前
坦率访烟发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
从容尔柳发布了新的文献求助10
4秒前
酷炫蛋挞完成签到 ,获得积分10
5秒前
科研通AI6应助雪糕采纳,获得10
5秒前
shen完成签到,获得积分10
6秒前
汉堡发布了新的文献求助10
7秒前
菠菜发布了新的文献求助150
7秒前
甜美枫叶完成签到,获得积分10
7秒前
英姑应助安详的觅风采纳,获得10
7秒前
仙女的小可爱完成签到 ,获得积分10
7秒前
8秒前
折柳完成签到 ,获得积分10
9秒前
zybbb完成签到 ,获得积分10
10秒前
10秒前
10秒前
Dillen发布了新的文献求助10
10秒前
田田完成签到,获得积分10
10秒前
12秒前
13秒前
萧然发布了新的文献求助10
14秒前
paperslicing完成签到,获得积分10
14秒前
科研小废物完成签到,获得积分20
15秒前
16秒前
16秒前
16秒前
爱骑车的CH完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
19秒前
星辰大海应助整个好活采纳,获得10
19秒前
霸气明雪发布了新的文献求助10
20秒前
大个应助萧然采纳,获得10
20秒前
Dillen完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660142
求助须知:如何正确求助?哪些是违规求助? 4831530
关于积分的说明 15089282
捐赠科研通 4818721
什么是DOI,文献DOI怎么找? 2578762
邀请新用户注册赠送积分活动 1533370
关于科研通互助平台的介绍 1492124