Application of machine learning to analyze ozone sensitivity to influencing factors: A case study in Nanjing, China

环境科学 臭氧 氮氧化物 气象学 灵敏度(控制系统) 梯度升压 污染 地面臭氧 大气科学 计算机科学 化学 机器学习 工程类 随机森林 地理 燃烧 生态学 电子工程 有机化学 地质学 生物
作者
Chenwu Zhang,Xie Yu-min,Min Shao,Qin’geng Wang
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:929: 172544-172544 被引量:9
标识
DOI:10.1016/j.scitotenv.2024.172544
摘要

Ground-level ozone (O3) has been an emerging concern in China. Due to its complicated formation mechanisms, understanding the effects of influencing factors is critical for making effective efforts on the pollution control. This study aims to present and demonstrate the practicality of a data-driven technique that applies a machine learning (ML) model coupled with the SHapley Additive exPlanations (SHAP) approach in O3 simulation and sensitivity analysis. Based on hourly measured concentrations of O3 and its major precursors, as well as meteorological factors in a northern area of Nanjing, China, a Light Gradient Boosting Machine (LightGBM) model was established to simulate O3 concentrations in different seasons, and the SHAP approach was applied to conduct in-depth analysis on the impacts of influencing factors on O3 formation. The results indicated a reliable performance of the ML model in simulating O3 concentrations, with the coefficient of determination (R2) between the measured and simulated larger than 0.80, and the impacts of influencing factors were reasonably evaluated by the SHAP approach on both seasonal and diurnal time scales. It was found that although volatile organic compounds (VOCs) and nitrogen oxides (NOx), as well as temperature and relative humidity, were generally the main influencing factors, their sensitivities to O3 formation varied significantly in different seasons and with time of the day. This study suggests that the data-driven ML model is a practicable technique and may act as an alternative way to perform mechanism analysis to some extent, and has immense potential to be applied in both problem research and decision-making for air pollution control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
刘涵完成签到 ,获得积分10
2秒前
帅气的沧海完成签到 ,获得积分10
3秒前
辣辣辣辣辣辣完成签到 ,获得积分10
6秒前
7秒前
10秒前
乐观半兰完成签到,获得积分10
12秒前
12秒前
小丸子和zz完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
江雁完成签到,获得积分10
14秒前
坚定芯完成签到,获得积分10
14秒前
叶子兮完成签到,获得积分10
16秒前
幽默的妍完成签到 ,获得积分10
16秒前
Snow完成签到 ,获得积分10
16秒前
16秒前
liuyuh完成签到,获得积分10
17秒前
悠明夜月完成签到 ,获得积分10
18秒前
乌云乌云快走开完成签到,获得积分10
18秒前
你是我的唯一完成签到 ,获得积分10
18秒前
洁白的故人完成签到 ,获得积分10
20秒前
乐观半兰发布了新的文献求助10
20秒前
water应助科研通管家采纳,获得10
21秒前
zhang完成签到 ,获得积分10
21秒前
water应助科研通管家采纳,获得10
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
orixero应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
大模型应助科研通管家采纳,获得10
21秒前
21秒前
鲲鹏完成签到 ,获得积分10
22秒前
大气建辉完成签到 ,获得积分10
22秒前
尛森完成签到,获得积分10
22秒前
机灵枕头完成签到 ,获得积分10
23秒前
糖糖科研顺利呀完成签到 ,获得积分10
25秒前
辣小扬完成签到 ,获得积分10
27秒前
传奇3应助水晶茶杯采纳,获得10
29秒前
幽默的素阴完成签到 ,获得积分10
33秒前
小小鱼完成签到 ,获得积分10
40秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022