Application of machine learning to analyze ozone sensitivity to influencing factors: A case study in Nanjing, China

环境科学 臭氧 氮氧化物 气象学 灵敏度(控制系统) 梯度升压 污染 地面臭氧 大气科学 计算机科学 化学 机器学习 工程类 随机森林 地理 燃烧 生态学 电子工程 有机化学 地质学 生物
作者
Chenwu Zhang,Xie Yu-min,Min Shao,Qin’geng Wang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:929: 172544-172544 被引量:16
标识
DOI:10.1016/j.scitotenv.2024.172544
摘要

Ground-level ozone (O3) has been an emerging concern in China. Due to its complicated formation mechanisms, understanding the effects of influencing factors is critical for making effective efforts on the pollution control. This study aims to present and demonstrate the practicality of a data-driven technique that applies a machine learning (ML) model coupled with the SHapley Additive exPlanations (SHAP) approach in O3 simulation and sensitivity analysis. Based on hourly measured concentrations of O3 and its major precursors, as well as meteorological factors in a northern area of Nanjing, China, a Light Gradient Boosting Machine (LightGBM) model was established to simulate O3 concentrations in different seasons, and the SHAP approach was applied to conduct in-depth analysis on the impacts of influencing factors on O3 formation. The results indicated a reliable performance of the ML model in simulating O3 concentrations, with the coefficient of determination (R2) between the measured and simulated larger than 0.80, and the impacts of influencing factors were reasonably evaluated by the SHAP approach on both seasonal and diurnal time scales. It was found that although volatile organic compounds (VOCs) and nitrogen oxides (NOx), as well as temperature and relative humidity, were generally the main influencing factors, their sensitivities to O3 formation varied significantly in different seasons and with time of the day. This study suggests that the data-driven ML model is a practicable technique and may act as an alternative way to perform mechanism analysis to some extent, and has immense potential to be applied in both problem research and decision-making for air pollution control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
通行证应助申生氏采纳,获得10
1秒前
小包谷完成签到,获得积分10
2秒前
斯文败类应助HuangJiajia_FZU采纳,获得10
2秒前
3秒前
大模型应助蛋烘糕采纳,获得10
4秒前
空气的味道完成签到,获得积分10
5秒前
浮游应助单薄书蕾采纳,获得10
6秒前
6秒前
8秒前
wangting发布了新的文献求助10
10秒前
10秒前
搜集达人应助qu采纳,获得10
11秒前
13秒前
渔夫应助默默的冰兰采纳,获得10
14秒前
wangting完成签到,获得积分10
15秒前
rmbsLHC发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
火火火木完成签到 ,获得积分10
17秒前
19秒前
蓝莓酱蘸橘子完成签到 ,获得积分10
21秒前
21秒前
21秒前
23秒前
23秒前
CJ发布了新的文献求助10
24秒前
夏晴晴完成签到,获得积分10
24秒前
赵雪莹完成签到,获得积分10
24秒前
25秒前
小蘑菇应助rmbsLHC采纳,获得10
25秒前
文艺安筠发布了新的文献求助10
26秒前
SCI的芷蝶完成签到 ,获得积分10
26秒前
NexusExplorer应助徐风年采纳,获得10
26秒前
轻松念蕾发布了新的文献求助10
27秒前
俏皮的老城完成签到 ,获得积分10
27秒前
英俊的铭应助灵巧涵雁采纳,获得10
27秒前
ttc完成签到,获得积分10
27秒前
28秒前
冷傲迎梦发布了新的文献求助10
29秒前
冰镇杨梅罐头完成签到 ,获得积分10
29秒前
衿越应助xiaowu采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495259
求助须知:如何正确求助?哪些是违规求助? 4592967
关于积分的说明 14439338
捐赠科研通 4525803
什么是DOI,文献DOI怎么找? 2479715
邀请新用户注册赠送积分活动 1464544
关于科研通互助平台的介绍 1437385