亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of machine learning to analyze ozone sensitivity to influencing factors: A case study in Nanjing, China

环境科学 臭氧 氮氧化物 气象学 灵敏度(控制系统) 梯度升压 污染 地面臭氧 大气科学 计算机科学 化学 机器学习 工程类 随机森林 地理 燃烧 生态学 电子工程 有机化学 地质学 生物
作者
Chenwu Zhang,Xie Yu-min,Min Shao,Qin’geng Wang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:929: 172544-172544 被引量:16
标识
DOI:10.1016/j.scitotenv.2024.172544
摘要

Ground-level ozone (O3) has been an emerging concern in China. Due to its complicated formation mechanisms, understanding the effects of influencing factors is critical for making effective efforts on the pollution control. This study aims to present and demonstrate the practicality of a data-driven technique that applies a machine learning (ML) model coupled with the SHapley Additive exPlanations (SHAP) approach in O3 simulation and sensitivity analysis. Based on hourly measured concentrations of O3 and its major precursors, as well as meteorological factors in a northern area of Nanjing, China, a Light Gradient Boosting Machine (LightGBM) model was established to simulate O3 concentrations in different seasons, and the SHAP approach was applied to conduct in-depth analysis on the impacts of influencing factors on O3 formation. The results indicated a reliable performance of the ML model in simulating O3 concentrations, with the coefficient of determination (R2) between the measured and simulated larger than 0.80, and the impacts of influencing factors were reasonably evaluated by the SHAP approach on both seasonal and diurnal time scales. It was found that although volatile organic compounds (VOCs) and nitrogen oxides (NOx), as well as temperature and relative humidity, were generally the main influencing factors, their sensitivities to O3 formation varied significantly in different seasons and with time of the day. This study suggests that the data-driven ML model is a practicable technique and may act as an alternative way to perform mechanism analysis to some extent, and has immense potential to be applied in both problem research and decision-making for air pollution control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Artin发布了新的文献求助30
8秒前
量子星尘发布了新的文献求助10
10秒前
14秒前
量子星尘发布了新的文献求助30
15秒前
29秒前
共享精神应助科研通管家采纳,获得10
49秒前
Criminology34应助科研通管家采纳,获得10
49秒前
49秒前
51秒前
55秒前
Sean完成签到,获得积分10
1分钟前
Sean发布了新的文献求助10
1分钟前
我是老大应助Sean采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
重庆森林完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
小伙子应助budingman采纳,获得50
2分钟前
yg发布了新的文献求助10
3分钟前
3分钟前
知许完成签到 ,获得积分10
3分钟前
NexusExplorer应助yg采纳,获得10
3分钟前
汉堡包应助yg采纳,获得10
3分钟前
科研完成签到,获得积分10
3分钟前
3分钟前
3分钟前
wyx完成签到,获得积分10
3分钟前
若尘完成签到,获得积分10
3分钟前
若尘发布了新的文献求助10
3分钟前
TruongThe完成签到,获得积分20
4分钟前
小蘑菇应助明亮的涵山采纳,获得10
4分钟前
小豆芽完成签到,获得积分10
4分钟前
明亮的涵山完成签到,获得积分20
4分钟前
4分钟前
5分钟前
5分钟前
简单慕凝完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723904
求助须知:如何正确求助?哪些是违规求助? 5282409
关于积分的说明 15299338
捐赠科研通 4872163
什么是DOI,文献DOI怎么找? 2616598
邀请新用户注册赠送积分活动 1566476
关于科研通互助平台的介绍 1523314