Application of machine learning to analyze ozone sensitivity to influencing factors: A case study in Nanjing, China

环境科学 臭氧 氮氧化物 气象学 灵敏度(控制系统) 梯度升压 污染 地面臭氧 大气科学 计算机科学 化学 机器学习 工程类 随机森林 地理 燃烧 生态学 电子工程 有机化学 地质学 生物
作者
Chenwu Zhang,Xie Yu-min,Min Shao,Qin’geng Wang
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:929: 172544-172544 被引量:9
标识
DOI:10.1016/j.scitotenv.2024.172544
摘要

Ground-level ozone (O3) has been an emerging concern in China. Due to its complicated formation mechanisms, understanding the effects of influencing factors is critical for making effective efforts on the pollution control. This study aims to present and demonstrate the practicality of a data-driven technique that applies a machine learning (ML) model coupled with the SHapley Additive exPlanations (SHAP) approach in O3 simulation and sensitivity analysis. Based on hourly measured concentrations of O3 and its major precursors, as well as meteorological factors in a northern area of Nanjing, China, a Light Gradient Boosting Machine (LightGBM) model was established to simulate O3 concentrations in different seasons, and the SHAP approach was applied to conduct in-depth analysis on the impacts of influencing factors on O3 formation. The results indicated a reliable performance of the ML model in simulating O3 concentrations, with the coefficient of determination (R2) between the measured and simulated larger than 0.80, and the impacts of influencing factors were reasonably evaluated by the SHAP approach on both seasonal and diurnal time scales. It was found that although volatile organic compounds (VOCs) and nitrogen oxides (NOx), as well as temperature and relative humidity, were generally the main influencing factors, their sensitivities to O3 formation varied significantly in different seasons and with time of the day. This study suggests that the data-driven ML model is a practicable technique and may act as an alternative way to perform mechanism analysis to some extent, and has immense potential to be applied in both problem research and decision-making for air pollution control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助1112采纳,获得10
1秒前
shi完成签到,获得积分10
1秒前
好运莲莲完成签到,获得积分10
1秒前
钱邦国发布了新的文献求助200
2秒前
18238496540完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
6秒前
李爱国应助机灵的茹妖采纳,获得10
7秒前
科研狗完成签到,获得积分10
8秒前
8秒前
8秒前
幸符发布了新的文献求助10
8秒前
有魅力哈密瓜完成签到,获得积分10
9秒前
英俊的铭应助xiaoxiaojiang采纳,获得10
9秒前
幸运花花完成签到,获得积分10
9秒前
共享精神应助研究僧采纳,获得10
11秒前
11秒前
诚心的尔阳完成签到,获得积分10
11秒前
韩涵发布了新的文献求助10
12秒前
KKKpumc完成签到,获得积分10
13秒前
思源应助科研通管家采纳,获得10
13秒前
14秒前
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
yx_cheng应助科研通管家采纳,获得50
14秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
慕青应助科研通管家采纳,获得10
14秒前
YGJ发布了新的文献求助10
15秒前
夕夕口口发布了新的文献求助10
15秒前
16秒前
薛定鹅的狐狸完成签到,获得积分20
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975953
求助须知:如何正确求助?哪些是违规求助? 3520269
关于积分的说明 11201866
捐赠科研通 3256738
什么是DOI,文献DOI怎么找? 1798436
邀请新用户注册赠送积分活动 877578
科研通“疑难数据库(出版商)”最低求助积分说明 806464