Application of machine learning to analyze ozone sensitivity to influencing factors: A case study in Nanjing, China

环境科学 臭氧 氮氧化物 气象学 灵敏度(控制系统) 梯度升压 污染 地面臭氧 大气科学 计算机科学 化学 机器学习 工程类 随机森林 地理 燃烧 生态学 电子工程 有机化学 地质学 生物
作者
Chenwu Zhang,Xie Yu-min,Min Shao,Qin’geng Wang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:929: 172544-172544 被引量:16
标识
DOI:10.1016/j.scitotenv.2024.172544
摘要

Ground-level ozone (O3) has been an emerging concern in China. Due to its complicated formation mechanisms, understanding the effects of influencing factors is critical for making effective efforts on the pollution control. This study aims to present and demonstrate the practicality of a data-driven technique that applies a machine learning (ML) model coupled with the SHapley Additive exPlanations (SHAP) approach in O3 simulation and sensitivity analysis. Based on hourly measured concentrations of O3 and its major precursors, as well as meteorological factors in a northern area of Nanjing, China, a Light Gradient Boosting Machine (LightGBM) model was established to simulate O3 concentrations in different seasons, and the SHAP approach was applied to conduct in-depth analysis on the impacts of influencing factors on O3 formation. The results indicated a reliable performance of the ML model in simulating O3 concentrations, with the coefficient of determination (R2) between the measured and simulated larger than 0.80, and the impacts of influencing factors were reasonably evaluated by the SHAP approach on both seasonal and diurnal time scales. It was found that although volatile organic compounds (VOCs) and nitrogen oxides (NOx), as well as temperature and relative humidity, were generally the main influencing factors, their sensitivities to O3 formation varied significantly in different seasons and with time of the day. This study suggests that the data-driven ML model is a practicable technique and may act as an alternative way to perform mechanism analysis to some extent, and has immense potential to be applied in both problem research and decision-making for air pollution control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
素简发布了新的文献求助10
1秒前
1秒前
1+1发布了新的文献求助10
2秒前
123456发布了新的文献求助20
2秒前
独特元蝶完成签到,获得积分20
2秒前
2秒前
123完成签到,获得积分20
2秒前
liuwy发布了新的文献求助10
3秒前
3秒前
徐老师完成签到 ,获得积分10
4秒前
独特元蝶发布了新的文献求助10
5秒前
傅。完成签到,获得积分10
5秒前
小何发布了新的文献求助10
6秒前
龍Ryu发布了新的文献求助10
6秒前
深情安青应助祝你开心采纳,获得10
6秒前
qu完成签到 ,获得积分20
7秒前
7秒前
深情安青应助xzm采纳,获得10
7秒前
8秒前
轨迹应助Queena采纳,获得10
8秒前
8秒前
瓜6发布了新的文献求助10
8秒前
9秒前
123发布了新的文献求助30
9秒前
9秒前
9秒前
Aria完成签到,获得积分10
10秒前
10秒前
素简完成签到,获得积分10
10秒前
11秒前
多金多金发布了新的文献求助10
12秒前
12秒前
13秒前
小理事完成签到,获得积分10
13秒前
77发布了新的文献求助10
13秒前
邹咕噜发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
14秒前
Lucas应助iuhgnor采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667453
求助须知:如何正确求助?哪些是违规求助? 4885755
关于积分的说明 15120132
捐赠科研通 4826235
什么是DOI,文献DOI怎么找? 2583865
邀请新用户注册赠送积分活动 1537959
关于科研通互助平台的介绍 1496082