Efficient Ensemble Broad Learning System Based on Dropout and DropConnect

辍学(神经网络) 集成学习 计算机科学 人工智能 机器学习
作者
Yiwan Cao,S.Z. Li,C. L. Philip Chen,Jun Fu,Fei Chu
出处
期刊:International Journal of Intelligent Control and Systems
标识
DOI:10.62678/ijics202403.10110
摘要

Broad Learning System is an emerged efficient algorithm for training single hidden layer feedforward neural network (SLFN) with fast speed and good generalization ability. However, it is very difficult to determine the appropriate broad learning system structure and broad learning system may perform overfitting due to the dependence between nodes in processing fully connected network. In order to deal with these problems, efficient ensemble broad learning system based on Dropout and DropConnect are proposed in this paper. The proposed Dropout Ensemble Broad Learning System randomly discards hidden nodes to improve diversity between individuals and reduce the synergy between nodes to improve prediction stability. The DropConnect Ensemble Broad Learning System randomly drops connect weights to generate more complementary models by adding input attribute disturbance. The experimental results and statistical analysis on UCI data sets confirm that the proposed method can solve the problem of model overfitting caused by the strong dependence between the nodes of ensemble broad learning system and also show that the proposed approaches outperform the original BLS on prediction stability and classification accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
共享精神应助小小采纳,获得10
2秒前
张张张哈哈哈完成签到,获得积分10
2秒前
switeie发布了新的文献求助20
2秒前
淡定的曼易应助hyy采纳,获得30
2秒前
脑洞疼应助文献啊文献采纳,获得10
3秒前
枫竹轩完成签到,获得积分10
3秒前
orixero应助木通采纳,获得10
3秒前
俊秀的念烟完成签到,获得积分10
4秒前
6秒前
一棵草发布了新的文献求助10
6秒前
沫沫发布了新的文献求助10
7秒前
8秒前
霸气的惜寒完成签到,获得积分10
8秒前
沸点发布了新的文献求助10
9秒前
细腻笑卉完成签到 ,获得积分10
9秒前
从容芮应助张鸿蓉采纳,获得10
9秒前
10秒前
YNN完成签到,获得积分20
10秒前
12秒前
13秒前
上官若男应助小小林柒染采纳,获得10
13秒前
13秒前
年年有余发布了新的文献求助20
14秒前
wanci应助鸡蛋仔采纳,获得30
14秒前
15秒前
稳重的如容完成签到 ,获得积分10
17秒前
caoshisheng发布了新的文献求助10
17秒前
18秒前
自信寄灵发布了新的文献求助10
18秒前
20秒前
木通发布了新的文献求助10
20秒前
20秒前
20秒前
葛鲁完成签到,获得积分10
21秒前
啦啦啦发布了新的文献求助30
21秒前
21秒前
23秒前
乐乐宝完成签到,获得积分10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136624
求助须知:如何正确求助?哪些是违规求助? 2787645
关于积分的说明 7782625
捐赠科研通 2443718
什么是DOI,文献DOI怎么找? 1299386
科研通“疑难数据库(出版商)”最低求助积分说明 625429
版权声明 600954