环境经济学
绿色发展
面板数据
资源(消歧)
适度
环境污染
污染
绿色增长
长江
波特假说
还原(数学)
自然资源经济学
绿色经济
业务
中国
环境资源管理
经济
环境科学
可持续发展
计算机科学
环境保护
环境政策
计量经济学
地理
法学
数学
几何学
政治学
计算机网络
生态学
考古
生物
机器学习
作者
Qiuyun Zhao,Mei Jiang,Zuoxiang Zhao,Fan Liu,Li Zhou
出处
期刊:Energy Economics
[Elsevier BV]
日期:2024-04-03
卷期号:133: 107525-107525
被引量:18
标识
DOI:10.1016/j.eneco.2024.107525
摘要
This study analyzes the environmental dynamics in the Yangtze River Economic Belt from 2006 to 2020, using panel data from 108 cities. Employing the Modified Undesirable Epsilon-based measure approach, it assesses pollution reduction and carbon efficiency through a spatial evolution analysis. Advanced models, including fixed-effects, moderation effects, and threshold effects models, explore the impact and mechanisms of green technological innovation. Machine learning methods and a biased effects model further investigate the dynamic impact of green technology innovation. Key findings indicate that green technological innovation significantly enhances pollution reduction and carbon efficiency, especially in middle reaches, low-carbon, and non-resource cities. Formal and informal environmental regulations act as substantial moderators with varying efficacy. A single threshold effect based on development levels highlights varied moderating influences. Optimal factor input points are identified for green technology innovation, formal environmental regulation, and informal environmental regulation. Policy recommendations emphasize the need to enhance green technological innovation and implement tailored environmental regulatory frameworks to boost pollution reduction and carbon efficiency in the Yangtze River Economic Belt.
科研通智能强力驱动
Strongly Powered by AbleSci AI