已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of histopathologic grades of bladder cancer with radiomics based on MRI: Comparison with traditional MRI

接收机工作特性 医学 无线电技术 列线图 单变量 磁共振成像 逻辑回归 有效扩散系数 放射科 核医学 队列 膀胱癌 单变量分析 多元统计 多元分析 癌症 机器学习 病理 肿瘤科 计算机科学 内科学
作者
Longchao Li,Jing Zhang,Xia Zhe,Min Tang,Li Zhang,Xiaoyan Lei,Xiaoling Zhang
出处
期刊:Urologic Oncology-seminars and Original Investigations [Elsevier]
卷期号:42 (6): 176.e9-176.e20
标识
DOI:10.1016/j.urolonc.2024.02.008
摘要

To compare biparametric magnetic resonance imaging (bp-MRI) radiomics signatures and traditional MRI model for the preoperative prediction of bladder cancer (BCa) grade. This retrospective study included 255 consecutive patients with pathologically confirmed 113 low-grade and 142 high-grade BCa. The traditional MRI nomogram model was developed using univariate and multivariate logistic regression by the mean apparent diffusion coefficient (ADC), vesical imaging reporting and data system, tumor size, and the number of tumors. Volumes of interest were manually drawn on T2-weighted imaging (T2WI) and ADC maps by 2 radiologists. Using one-way analysis of variance, correlation, and least absolute shrinkage and selection operator methods to select features. Then, a logistic regression classifier was used to develop the radiomics signatures. Receiver operating characteristic (ROC) analysis was used to compare the diagnostic abilities of the radiomics and traditional MRI models by the DeLong test. Finally, decision curve analysis was performed by estimating the clinical usefulness of the 2 models. The area under the ROC curves (AUCs) of the traditional MRI model were 0.841 in the training cohort and 0.806 in the validation cohort. The AUCs of the 3 groups of radiomics model [ADC, T2WI, bp-MRI (ADC and T2WI)] were 0.888, 0.875, and 0.899 in the training cohort and 0.863, 0.805, and 0.867 in the validation cohort, respectively. The combined radiomics model achieved higher AUCs than the traditional MRI model. decision curve analysis indicated that the radiomics model had higher net benefits than the traditional MRI model. The bp-MRI radiomics model may help distinguish high-grade and low-grade BCa and outperforming the traditional MRI model. Multicenter validation is needed to acquire high-level evidence for its clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
250发布了新的文献求助10
1秒前
Owen应助Georges-09采纳,获得10
1秒前
物语完成签到,获得积分10
2秒前
高兴向秋完成签到,获得积分10
2秒前
111发布了新的文献求助10
4秒前
物语发布了新的文献求助10
4秒前
feihu发布了新的文献求助10
4秒前
所所应助Tao2023采纳,获得10
6秒前
6秒前
俏皮的幼珊完成签到 ,获得积分10
6秒前
7秒前
小龙发布了新的文献求助10
7秒前
饱满的复天完成签到 ,获得积分10
8秒前
9秒前
Miyamotoo发布了新的文献求助50
9秒前
Jasper应助zoujinru采纳,获得10
9秒前
9秒前
夏夜发布了新的文献求助10
10秒前
CodeCraft应助物语采纳,获得10
10秒前
西雅发布了新的文献求助10
10秒前
涂常青完成签到 ,获得积分10
11秒前
可靠半青完成签到 ,获得积分10
11秒前
铁匠发布了新的文献求助10
14秒前
14秒前
Eric发布了新的文献求助10
16秒前
华仔应助Tao2023采纳,获得10
16秒前
Ming完成签到,获得积分10
17秒前
SciGPT应助顾难摧采纳,获得10
18秒前
充电宝应助123456采纳,获得10
19秒前
CipherSage应助Eric采纳,获得10
19秒前
24秒前
英俊的铭应助alnn采纳,获得10
25秒前
26秒前
沸羊羊完成签到,获得积分10
30秒前
zjkzh发布了新的文献求助10
30秒前
珷玞完成签到,获得积分10
30秒前
Akim应助Tao2023采纳,获得10
30秒前
30秒前
32秒前
一颗甜柚完成签到 ,获得积分10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516074
求助须知:如何正确求助?哪些是违规求助? 3098347
关于积分的说明 9239077
捐赠科研通 2793297
什么是DOI,文献DOI怎么找? 1532982
邀请新用户注册赠送积分活动 712472
科研通“疑难数据库(出版商)”最低求助积分说明 707322