China University Online Public Opinion Risk Dataset

舆论 声誉 人气 订单(交换) 传播 互联网 情绪分析 生计 计算机科学 互联网隐私 公共关系 业务 万维网 政治学 人工智能 地理 政治 法学 电信 考古 财务 农业
作者
Shaoqiang Wang,Tiansheng Li,X. A. Shen,Hongxin Zhao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 55225-55233
标识
DOI:10.1109/access.2024.3389974
摘要

With the widespread popularity of social software and self-media, online public opinion incidents in colleges and universities occur frequently and present a complicated situation. In the big data era, university students have gained a more relaxed environment in which to receive and disseminate public opinion information, enabling them to spread their opinions and insights to the Internet more rapidly, thus exacerbating the riskiness of public opinion information dissemination. We constructed CUOPO, the first risk classification dataset of China university online public opinion, and screened out 10,255 representative public opinion texts from a large number of university online public opinion information, including 3,641 risk-free and 6,614 risky texts. These risky texts cover many fields, including 1,755 college livelihood risk texts, 767 campus safety risk texts, 1,395 school order risk texts, 906 university reputation risk texts, and 1,793 advertisement risk texts. The dataset contains various information about each network opinion, including authentic labels, text information, time information, and network information. Through an in-depth study of CUOPO, we found that universities have significant risk issues in the areas of livelihood, safety, teaching order, reputation, and advertisement diversion, which require great attention from university administrators. To validate the effectiveness of the CUOPO, we conduct extensive experiments on the dataset using a series of neural network methods to provide benchmark results for predicting online public opinion risk texts. We expect that CUOPO can provide strong data support for the study of the types of online public opinion risks in colleges and universities and thus play a positive role in promoting the progress of college and university public opinion research. The dataset is available at https://github.com/TianShengLee98/CUOPO-Dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子世界小居民完成签到,获得积分10
1秒前
风一起完成签到,获得积分10
1秒前
科研通AI6应助李白白采纳,获得10
1秒前
隐形的元珊完成签到,获得积分10
1秒前
VAudreyV完成签到 ,获得积分20
1秒前
琪琪扬扬完成签到,获得积分10
2秒前
Serein完成签到 ,获得积分10
2秒前
2秒前
2秒前
ive张元英爱科研完成签到,获得积分10
2秒前
tufei发布了新的文献求助10
2秒前
连夜雪完成签到,获得积分10
2秒前
2秒前
sky发布了新的文献求助10
3秒前
3秒前
GG应助踏实凝云采纳,获得10
3秒前
安逸完成签到,获得积分10
4秒前
老年陈皮发布了新的文献求助10
4秒前
勤奋的刺猬完成签到,获得积分20
4秒前
emo发布了新的文献求助10
4秒前
孙凤敏完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
杜青发布了新的文献求助10
5秒前
VAudreyV关注了科研通微信公众号
5秒前
6秒前
任性的诗兰完成签到,获得积分10
6秒前
落后百褶裙完成签到,获得积分10
6秒前
SciGPT应助15采纳,获得10
6秒前
人文完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
Xuer完成签到 ,获得积分10
7秒前
7秒前
www发布了新的文献求助10
8秒前
赘婿应助千玺的小粉丝儿采纳,获得10
8秒前
璐璐核桃露给璐璐核桃露的求助进行了留言
8秒前
情怀应助乖猫要努力采纳,获得10
8秒前
peter完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721