China University Online Public Opinion Risk Dataset

舆论 声誉 人气 订单(交换) 传播 互联网 情绪分析 生计 计算机科学 互联网隐私 公共关系 业务 万维网 政治学 人工智能 地理 电信 政治 农业 考古 法学 财务
作者
Shaoqiang Wang,Tiansheng Li,X. A. Shen,Hongxin Zhao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 55225-55233
标识
DOI:10.1109/access.2024.3389974
摘要

With the widespread popularity of social software and self-media, online public opinion incidents in colleges and universities occur frequently and present a complicated situation. In the big data era, university students have gained a more relaxed environment in which to receive and disseminate public opinion information, enabling them to spread their opinions and insights to the Internet more rapidly, thus exacerbating the riskiness of public opinion information dissemination. We constructed CUOPO, the first risk classification dataset of China university online public opinion, and screened out 10,255 representative public opinion texts from a large number of university online public opinion information, including 3,641 risk-free and 6,614 risky texts. These risky texts cover many fields, including 1,755 college livelihood risk texts, 767 campus safety risk texts, 1,395 school order risk texts, 906 university reputation risk texts, and 1,793 advertisement risk texts. The dataset contains various information about each network opinion, including authentic labels, text information, time information, and network information. Through an in-depth study of CUOPO, we found that universities have significant risk issues in the areas of livelihood, safety, teaching order, reputation, and advertisement diversion, which require great attention from university administrators. To validate the effectiveness of the CUOPO, we conduct extensive experiments on the dataset using a series of neural network methods to provide benchmark results for predicting online public opinion risk texts. We expect that CUOPO can provide strong data support for the study of the types of online public opinion risks in colleges and universities and thus play a positive role in promoting the progress of college and university public opinion research. The dataset is available at https://github.com/TianShengLee98/CUOPO-Dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今天你还好吗完成签到,获得积分10
刚刚
哈哈完成签到,获得积分20
刚刚
杨wx发布了新的文献求助10
1秒前
果子发布了新的文献求助10
1秒前
Hjwhjwing发布了新的文献求助10
2秒前
上官若男应助只只采纳,获得10
2秒前
3秒前
willenliu发布了新的文献求助30
3秒前
JiAWee完成签到 ,获得积分10
4秒前
4秒前
111发布了新的文献求助10
4秒前
QQ完成签到,获得积分10
5秒前
aczqay发布了新的文献求助10
6秒前
彭于晏应助Zz采纳,获得10
6秒前
沉默寒云发布了新的文献求助10
7秒前
ric发布了新的文献求助10
7秒前
9秒前
9秒前
一瓣橘子完成签到,获得积分10
10秒前
JUN关注了科研通微信公众号
10秒前
10秒前
Chang完成签到,获得积分20
11秒前
小马甲应助111采纳,获得10
11秒前
领导范儿应助Lzx采纳,获得10
12秒前
科研通AI6应助momo采纳,获得10
12秒前
Wcy发布了新的文献求助10
13秒前
13秒前
13秒前
大白鹅关注了科研通微信公众号
13秒前
14秒前
14秒前
14秒前
leilei完成签到,获得积分10
15秒前
小鲨鱼完成签到,获得积分10
15秒前
liboo完成签到,获得积分10
15秒前
16秒前
16秒前
LL完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5393801
求助须知:如何正确求助?哪些是违规求助? 4515106
关于积分的说明 14052738
捐赠科研通 4426288
什么是DOI,文献DOI怎么找? 2431263
邀请新用户注册赠送积分活动 1423445
关于科研通互助平台的介绍 1402505