A mixed-integer programming-based Q-learning approach for electric bus scheduling with multiple termini and service routes

整数规划 计算机科学 调度(生产过程) 数学优化 数学 算法
作者
Yimo Yan,Haomin Wen,Daoguo Yang,Ahf Chow,Qihao Wu,Yong‐Hong Kuo
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:162: 104570-104570 被引量:1
标识
DOI:10.1016/j.trc.2024.104570
摘要

Electric buses (EBs) are considered a more environmentally friendly mode of public transit. In addition to other practical challenges, including high infrastructure costs and short driving ranges, the operations of EBs are more demanding due to the necessary battery charging activities. Consequently, more sophisticated optimisation models and algorithms are required for effective operations. This paper presents an EB scheduling problem with multiple termini and service routes. Various realistic but complicated factors, such as shared facilities at multiple termini, the flexibility of plugging and unplugging chargers before an EB is fully charged, stochastic travel times, and EB breakdowns, are considered. We propose an integrated learning and mixed-integer linear programming (MILP) framework to overcome the computational difficulties when solving the problem. This framework leverages the strengths of reinforcement learning and MILP for fast computations due to its capability of learning from outcomes of state–action pairs and computational effectiveness guaranteed by the constraints governing the solution feasibility. Q-Learning and Twin Delayed Deep Deterministic Policy Gradient are adopted as our training methods. We conduct numerical experiments on artificial instances and realistic instances of a bus network in Hong Kong to assess the performance of our proposed approach. The results show that our proposed framework outperforms the benchmark optimisation approach, in terms of penalty on missed service trips, average headway, and variance of headway. The benefits of our proposed framework are more significant under a highly stochastic environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XLL小绿绿发布了新的文献求助10
2秒前
天天快乐应助仙女爷爷采纳,获得10
2秒前
草莓派完成签到,获得积分10
2秒前
Karma发布了新的文献求助10
2秒前
猪猪hero应助DARLING002采纳,获得10
2秒前
蔡一完成签到,获得积分10
2秒前
聪明帅哥发布了新的文献求助10
3秒前
妮儿发布了新的文献求助10
3秒前
wills完成签到,获得积分10
3秒前
BowieHuang应助wxy采纳,获得10
3秒前
qijie完成签到,获得积分10
3秒前
3秒前
4秒前
英俊的铭应助kiiso采纳,获得10
4秒前
Lucas应助ddw采纳,获得10
5秒前
5秒前
5秒前
yao chen发布了新的文献求助10
6秒前
7秒前
大模型应助科研通管家采纳,获得10
7秒前
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
8秒前
妮儿完成签到,获得积分10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
XLL小绿绿完成签到,获得积分10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得20
9秒前
英姑应助ngldy采纳,获得10
9秒前
小米发布了新的文献求助10
9秒前
Rjj发布了新的文献求助10
9秒前
李健应助科研通管家采纳,获得20
9秒前
9秒前
大模型应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760635
求助须知:如何正确求助?哪些是违规求助? 5525448
关于积分的说明 15397980
捐赠科研通 4897422
什么是DOI,文献DOI怎么找? 2634176
邀请新用户注册赠送积分活动 1582268
关于科研通互助平台的介绍 1537637