A mixed-integer programming-based Q-learning approach for electric bus scheduling with multiple termini and service routes

整数规划 计算机科学 调度(生产过程) 数学优化 数学 算法
作者
Yimo Yan,Haomin Wen,Daoguo Yang,Ahf Chow,Qihao Wu,Yong‐Hong Kuo
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:162: 104570-104570 被引量:1
标识
DOI:10.1016/j.trc.2024.104570
摘要

Electric buses (EBs) are considered a more environmentally friendly mode of public transit. In addition to other practical challenges, including high infrastructure costs and short driving ranges, the operations of EBs are more demanding due to the necessary battery charging activities. Consequently, more sophisticated optimisation models and algorithms are required for effective operations. This paper presents an EB scheduling problem with multiple termini and service routes. Various realistic but complicated factors, such as shared facilities at multiple termini, the flexibility of plugging and unplugging chargers before an EB is fully charged, stochastic travel times, and EB breakdowns, are considered. We propose an integrated learning and mixed-integer linear programming (MILP) framework to overcome the computational difficulties when solving the problem. This framework leverages the strengths of reinforcement learning and MILP for fast computations due to its capability of learning from outcomes of state–action pairs and computational effectiveness guaranteed by the constraints governing the solution feasibility. Q-Learning and Twin Delayed Deep Deterministic Policy Gradient are adopted as our training methods. We conduct numerical experiments on artificial instances and realistic instances of a bus network in Hong Kong to assess the performance of our proposed approach. The results show that our proposed framework outperforms the benchmark optimisation approach, in terms of penalty on missed service trips, average headway, and variance of headway. The benefits of our proposed framework are more significant under a highly stochastic environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助Ikkyu采纳,获得10
刚刚
AAAAA完成签到,获得积分10
刚刚
清晨发布了新的文献求助10
1秒前
1秒前
寂寞的惜灵完成签到,获得积分20
1秒前
战国瞳完成签到,获得积分10
1秒前
2秒前
2秒前
包容的荷花完成签到,获得积分10
2秒前
科研通AI5应助wellzhang采纳,获得30
3秒前
棉花糖吖吖吖完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
夔kk完成签到 ,获得积分10
4秒前
Xoosi完成签到 ,获得积分10
4秒前
屯屯鱼完成签到,获得积分20
5秒前
啊印完成签到,获得积分10
5秒前
chensihao发布了新的文献求助10
6秒前
Liuyd完成签到,获得积分10
6秒前
Chrischelsea完成签到,获得积分10
6秒前
6秒前
复杂雪一完成签到,获得积分10
7秒前
satori完成签到,获得积分10
7秒前
7秒前
田様应助鱼0306采纳,获得10
7秒前
浮游应助屯屯鱼采纳,获得10
8秒前
wlm发布了新的文献求助10
8秒前
周雪艳完成签到,获得积分10
8秒前
寒冷的海蓝完成签到,获得积分10
8秒前
九日完成签到,获得积分10
8秒前
low发布了新的文献求助10
9秒前
10秒前
明亮的海白关注了科研通微信公众号
10秒前
11秒前
HaidongZhang发布了新的文献求助30
11秒前
12秒前
无花果应助狂野的梦之采纳,获得10
12秒前
mark2021发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602181
求助须知:如何正确求助?哪些是违规求助? 4011609
关于积分的说明 12419641
捐赠科研通 3691701
什么是DOI,文献DOI怎么找? 2035278
邀请新用户注册赠送积分活动 1068494
科研通“疑难数据库(出版商)”最低求助积分说明 953025