A mixed-integer programming-based Q-learning approach for electric bus scheduling with multiple termini and service routes

整数规划 计算机科学 调度(生产过程) 数学优化 数学 算法
作者
Yimo Yan,Haomin Wen,Daoguo Yang,Ahf Chow,Qihao Wu,Yong‐Hong Kuo
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:162: 104570-104570 被引量:1
标识
DOI:10.1016/j.trc.2024.104570
摘要

Electric buses (EBs) are considered a more environmentally friendly mode of public transit. In addition to other practical challenges, including high infrastructure costs and short driving ranges, the operations of EBs are more demanding due to the necessary battery charging activities. Consequently, more sophisticated optimisation models and algorithms are required for effective operations. This paper presents an EB scheduling problem with multiple termini and service routes. Various realistic but complicated factors, such as shared facilities at multiple termini, the flexibility of plugging and unplugging chargers before an EB is fully charged, stochastic travel times, and EB breakdowns, are considered. We propose an integrated learning and mixed-integer linear programming (MILP) framework to overcome the computational difficulties when solving the problem. This framework leverages the strengths of reinforcement learning and MILP for fast computations due to its capability of learning from outcomes of state–action pairs and computational effectiveness guaranteed by the constraints governing the solution feasibility. Q-Learning and Twin Delayed Deep Deterministic Policy Gradient are adopted as our training methods. We conduct numerical experiments on artificial instances and realistic instances of a bus network in Hong Kong to assess the performance of our proposed approach. The results show that our proposed framework outperforms the benchmark optimisation approach, in terms of penalty on missed service trips, average headway, and variance of headway. The benefits of our proposed framework are more significant under a highly stochastic environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无私的朝雪完成签到 ,获得积分10
1秒前
Kate完成签到,获得积分10
1秒前
1秒前
清秋十三完成签到,获得积分10
2秒前
啦啦啦完成签到,获得积分10
2秒前
xliiii完成签到,获得积分10
2秒前
tytyty发布了新的文献求助10
3秒前
深情安青应助神勇冬莲采纳,获得10
4秒前
YM完成签到,获得积分10
4秒前
6秒前
甜美三娘完成签到,获得积分10
7秒前
汉堡包应助jellyfish采纳,获得20
7秒前
深情安青应助着急的无剑采纳,获得10
8秒前
苔苔完成签到,获得积分10
8秒前
所所应助儒雅的友瑶采纳,获得10
9秒前
陶醉雪青完成签到,获得积分10
9秒前
xcxc完成签到,获得积分10
9秒前
神勇冬莲完成签到,获得积分10
10秒前
传奇3应助元气少女岳云鹏采纳,获得10
10秒前
小猪完成签到,获得积分10
14秒前
英勇新烟完成签到,获得积分10
14秒前
herococa应助陶醉雪青采纳,获得10
15秒前
大力的飞莲完成签到,获得积分10
15秒前
CipherSage应助施凝采纳,获得10
16秒前
000发布了新的文献求助10
17秒前
18秒前
天天快乐应助科研小白采纳,获得10
19秒前
19秒前
SciGPT应助傲娇的曼香采纳,获得10
19秒前
共享精神应助kukudou2采纳,获得10
19秒前
领导范儿应助苔苔采纳,获得10
22秒前
FartKing发布了新的文献求助20
23秒前
LaTeXer应助FartKing采纳,获得30
26秒前
聪慧芷巧应助FartKing采纳,获得10
26秒前
科研老兵完成签到,获得积分10
27秒前
MnO2fff完成签到,获得积分10
29秒前
29秒前
施凝发布了新的文献求助10
34秒前
结实彤完成签到 ,获得积分10
35秒前
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950931
求助须知:如何正确求助?哪些是违规求助? 3496322
关于积分的说明 11081419
捐赠科研通 3226783
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868029
科研通“疑难数据库(出版商)”最低求助积分说明 800993