A mixed-integer programming-based Q-learning approach for electric bus scheduling with multiple termini and service routes

整数规划 计算机科学 调度(生产过程) 数学优化 数学 算法
作者
Yimo Yan,Haomin Wen,Daoguo Yang,Ahf Chow,Qihao Wu,Yong‐Hong Kuo
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:162: 104570-104570 被引量:1
标识
DOI:10.1016/j.trc.2024.104570
摘要

Electric buses (EBs) are considered a more environmentally friendly mode of public transit. In addition to other practical challenges, including high infrastructure costs and short driving ranges, the operations of EBs are more demanding due to the necessary battery charging activities. Consequently, more sophisticated optimisation models and algorithms are required for effective operations. This paper presents an EB scheduling problem with multiple termini and service routes. Various realistic but complicated factors, such as shared facilities at multiple termini, the flexibility of plugging and unplugging chargers before an EB is fully charged, stochastic travel times, and EB breakdowns, are considered. We propose an integrated learning and mixed-integer linear programming (MILP) framework to overcome the computational difficulties when solving the problem. This framework leverages the strengths of reinforcement learning and MILP for fast computations due to its capability of learning from outcomes of state–action pairs and computational effectiveness guaranteed by the constraints governing the solution feasibility. Q-Learning and Twin Delayed Deep Deterministic Policy Gradient are adopted as our training methods. We conduct numerical experiments on artificial instances and realistic instances of a bus network in Hong Kong to assess the performance of our proposed approach. The results show that our proposed framework outperforms the benchmark optimisation approach, in terms of penalty on missed service trips, average headway, and variance of headway. The benefits of our proposed framework are more significant under a highly stochastic environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xrf完成签到,获得积分10
刚刚
新新完成签到,获得积分10
1秒前
nn关闭了nn文献求助
1秒前
yamoon完成签到,获得积分10
1秒前
2秒前
2秒前
害怕的帽子完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
hdn完成签到,获得积分10
3秒前
曾无忧发布了新的文献求助10
3秒前
举个栗子8完成签到,获得积分10
3秒前
666y完成签到,获得积分10
3秒前
4秒前
大香蕉发布了新的文献求助10
4秒前
尊敬凝荷完成签到,获得积分10
4秒前
einspringen发布了新的文献求助10
4秒前
youknowdcf发布了新的文献求助10
5秒前
小蜻蜓完成签到,获得积分10
5秒前
粗心的忆山完成签到 ,获得积分10
5秒前
00发布了新的文献求助10
5秒前
薯条派完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
常裤子完成签到,获得积分10
6秒前
神勇友灵完成签到,获得积分0
6秒前
Zhijiuz完成签到,获得积分10
7秒前
留白完成签到 ,获得积分10
7秒前
winwin完成签到,获得积分10
7秒前
呀呀呀完成签到,获得积分10
7秒前
大肉猪完成签到,获得积分10
8秒前
今日无事发布了新的文献求助10
8秒前
丰富的高山完成签到,获得积分10
8秒前
泡泡完成签到,获得积分10
9秒前
9秒前
你好完成签到,获得积分20
9秒前
9秒前
zy发布了新的文献求助10
9秒前
cenghao应助吭哧吭哧采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959