Cu-MOF-derived Cu nanoparticles decorated porous N-doped biochar for low-temperature H2S desulfurization

烟气脱硫 生物炭 热解 吸附 硫黄 硫化氢 化学工程 多孔性 材料科学 纳米颗粒 核化学 无机化学 化学 冶金 纳米技术 有机化学 复合材料 工程类
作者
Lingwen Song,Yi Yuan,Yuan Wang,Tian C. Zhang,Ge He,Shaojun Yuan
出处
期刊:Fuel [Elsevier BV]
卷期号:368: 131682-131682 被引量:3
标识
DOI:10.1016/j.fuel.2024.131682
摘要

Hydrogen sulfide (H2S) is a highly toxic and corrosive gas that poses significant risks to human health and the environment. Therefore, the development of an adsorbent capable of efficiently purifying H2S at room temperature remains a challenging task. In this study, a novel composite adsorbent with a specific surface area of 434 m2·g−1 was fabricated by modifying porous N-doped biochar with Cu nanoparticles (Cu/NBC) derived from Cu-MOFs for low-temperature desulfurization of H2S. The effect of pyrolysis temperature and the doping ratio of Cu-MOFs to biochar on the desulfurization performance of H2S for the as-prepared Cu/NBC was comprehensively investigated. Experimental results indicated that the desulfurization capability of the optimized Cu/NBC-600-1 adsorbent (synthesized at a pyrolysis temperature of 600 °C and a doping ratio of 1:1) was significantly affected by the desulfurization conditions, and the optimal conditions were determined to be at 25 °C, with 20 % oxygen content and 70 % relative humidity. Under the optimized conditions, the Cu/NBC-600-1 adsorbent exhibited a high H2S removal capacity of 158.28 mg·g−1, which was about 3.8 times higher than that of the pristine N-doped biochar. The desulfurization mechanism of the Cu/NBC composite was demonstrated to involve reactive adsorption and catalytic oxidation, resulting in the formation of elemental sulfur and copper sulfides as the main products. This study not only provides a promising approach to modify porous biochar with MOF derivatives, but also offers an effective strategy to remove low concentration H2S at room temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
九零后无心完成签到,获得积分10
1秒前
1秒前
繁荣的代秋完成签到 ,获得积分10
2秒前
JR完成签到,获得积分10
2秒前
TvTiing完成签到,获得积分10
3秒前
banana完成签到,获得积分10
3秒前
666关闭了666文献求助
4秒前
fshell发布了新的文献求助20
4秒前
xm发布了新的文献求助10
5秒前
周声声发布了新的文献求助30
5秒前
6秒前
Lucas应助Dawson采纳,获得10
7秒前
7秒前
7秒前
Enna完成签到,获得积分10
7秒前
8秒前
8秒前
明天你好完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
11秒前
liang2508发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
14秒前
liang2508发布了新的文献求助10
14秒前
liang2508发布了新的文献求助10
14秒前
14秒前
liang2508发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4924906
求助须知:如何正确求助?哪些是违规求助? 4195065
关于积分的说明 13030178
捐赠科研通 3966775
什么是DOI,文献DOI怎么找? 2174275
邀请新用户注册赠送积分活动 1191665
关于科研通互助平台的介绍 1101154