Cu-MOF-derived Cu nanoparticles decorated porous N-doped biochar for low-temperature H2S desulfurization

烟气脱硫 生物炭 热解 吸附 硫黄 硫化氢 化学工程 多孔性 材料科学 纳米颗粒 核化学 无机化学 化学 冶金 纳米技术 有机化学 复合材料 工程类
作者
Lingwen Song,Yi Yuan,Yuan Wang,Tian C. Zhang,Ge He,Shaojun Yuan
出处
期刊:Fuel [Elsevier BV]
卷期号:368: 131682-131682 被引量:3
标识
DOI:10.1016/j.fuel.2024.131682
摘要

Hydrogen sulfide (H2S) is a highly toxic and corrosive gas that poses significant risks to human health and the environment. Therefore, the development of an adsorbent capable of efficiently purifying H2S at room temperature remains a challenging task. In this study, a novel composite adsorbent with a specific surface area of 434 m2·g−1 was fabricated by modifying porous N-doped biochar with Cu nanoparticles (Cu/NBC) derived from Cu-MOFs for low-temperature desulfurization of H2S. The effect of pyrolysis temperature and the doping ratio of Cu-MOFs to biochar on the desulfurization performance of H2S for the as-prepared Cu/NBC was comprehensively investigated. Experimental results indicated that the desulfurization capability of the optimized Cu/NBC-600-1 adsorbent (synthesized at a pyrolysis temperature of 600 °C and a doping ratio of 1:1) was significantly affected by the desulfurization conditions, and the optimal conditions were determined to be at 25 °C, with 20 % oxygen content and 70 % relative humidity. Under the optimized conditions, the Cu/NBC-600-1 adsorbent exhibited a high H2S removal capacity of 158.28 mg·g−1, which was about 3.8 times higher than that of the pristine N-doped biochar. The desulfurization mechanism of the Cu/NBC composite was demonstrated to involve reactive adsorption and catalytic oxidation, resulting in the formation of elemental sulfur and copper sulfides as the main products. This study not only provides a promising approach to modify porous biochar with MOF derivatives, but also offers an effective strategy to remove low concentration H2S at room temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Distance发布了新的文献求助10
1秒前
Ava应助737采纳,获得10
3秒前
逢春完成签到,获得积分10
3秒前
情怀应助kkdkg采纳,获得10
4秒前
章鱼完成签到,获得积分10
7秒前
7秒前
8秒前
11秒前
11秒前
haha发布了新的文献求助10
12秒前
13秒前
小蘑菇应助亿点快乐采纳,获得10
13秒前
14秒前
fxsg完成签到,获得积分10
14秒前
14秒前
15秒前
安详立果发布了新的文献求助10
17秒前
Colorc发布了新的文献求助10
17秒前
CipherSage应助暴躁的电话采纳,获得10
17秒前
无花果应助激昂的背包采纳,获得10
17秒前
freyr发布了新的文献求助10
17秒前
哒哒发布了新的文献求助10
19秒前
卜懂得完成签到,获得积分10
19秒前
桐桐应助爱学习的曼卉采纳,获得10
19秒前
Danboard发布了新的文献求助10
20秒前
发发发布了新的文献求助50
20秒前
22秒前
lujie完成签到,获得积分10
23秒前
23秒前
斯文败类应助哒哒采纳,获得10
25秒前
Distance完成签到,获得积分10
27秒前
water应助Danboard采纳,获得10
28秒前
酷波er应助安详立果采纳,获得10
28秒前
29秒前
兴奋小林发布了新的文献求助10
30秒前
haitun完成签到,获得积分10
31秒前
CR7应助Ever余儿采纳,获得20
31秒前
31秒前
31秒前
激昂的背包完成签到,获得积分10
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993660
求助须知:如何正确求助?哪些是违规求助? 3534375
关于积分的说明 11265355
捐赠科研通 3274133
什么是DOI,文献DOI怎么找? 1806307
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712