Combining physical laws and ANN for predicting energy consumption of data center cooling systems

能源消耗 数据中心 中心(范畴论) 法学 消费(社会学) 环境科学 物理定律 工程类 气象学 物理 政治学 电气工程 社会学 社会科学 化学 量子力学 结晶学
作者
Xuezhi Li,Xinyi Wang,Zhiguang He,Xiaoxuan Chen,Z. Li
出处
期刊:Energy and Buildings [Elsevier BV]
卷期号:311: 114170-114170
标识
DOI:10.1016/j.enbuild.2024.114170
摘要

Cooling systems within data centers are known for their substantial energy consumption. Predicting their energy usage typically involves two primary methodologies: constructing models grounded in physical principles and developing data-driven models. While physical models may lack broad applicability, artificial neural network (ANN) models often sacrifice interpretability. Striking a balance between accuracy and interpretability is a significant challenge in model development. In this study, we propose a novel approach that combines physical principles with ANN methodologies. By leveraging the strengths of both approaches, this combined model aims to enhance prediction accuracy while preserving interpretability and applicability. Experimental data specific to cooling systems were utilized to compare the predictive performance of the physical models, ANN models, and the combined model. Results demonstrate that the mean relative error (MRE) for the physical model was 7.95%, for the ANN model was 13.44%, and for the combined model was 6.54%. Additionally, the root mean square error (RMSE) values for the three models were 352.6, 258.3, and 181.9, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ryq327完成签到 ,获得积分10
刚刚
LXiao完成签到,获得积分10
刚刚
青炀完成签到,获得积分10
刚刚
刚刚
1秒前
uu发布了新的文献求助10
1秒前
Owen应助futing采纳,获得10
1秒前
you完成签到,获得积分10
1秒前
年轻心锁完成签到 ,获得积分10
1秒前
2秒前
CipherSage应助科研_小白采纳,获得20
2秒前
ED应助文化人采纳,获得10
3秒前
隐形静芙完成签到 ,获得积分10
3秒前
梁晓玲发布了新的文献求助10
3秒前
3秒前
顾矜应助Jjj采纳,获得10
3秒前
haimaisi完成签到,获得积分10
4秒前
wzz完成签到,获得积分10
4秒前
4秒前
清爽的铭完成签到,获得积分10
4秒前
冷艳的璎完成签到,获得积分10
5秒前
悦耳从彤完成签到,获得积分10
5秒前
彭于晏应助小赵采纳,获得10
5秒前
大模型应助zxf采纳,获得10
6秒前
霓娜酱完成签到 ,获得积分10
6秒前
6秒前
刘英丽发布了新的文献求助10
7秒前
神羊发布了新的文献求助20
7秒前
more完成签到,获得积分10
7秒前
li完成签到,获得积分10
8秒前
8秒前
闪闪凝冬完成签到,获得积分10
8秒前
充电宝应助粗心的胜采纳,获得10
8秒前
时尚的大碗完成签到,获得积分10
8秒前
泡泡糖发布了新的文献求助10
8秒前
一坨完成签到 ,获得积分10
9秒前
9秒前
9秒前
jzmulyl发布了新的文献求助10
9秒前
柠觉呢完成签到 ,获得积分10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051