How to establish detection limits for environmental microplastics analysis

微塑料 复制 环境科学 空白 样品(材料) 沉积物 检出限 环境化学 统计 数学 化学 生物 色谱法 工程类 机械工程 古生物学
作者
Wenjian Lao,Charles S. Wong
出处
期刊:Chemosphere [Elsevier]
卷期号:327: 138456-138456 被引量:8
标识
DOI:10.1016/j.chemosphere.2023.138456
摘要

Establishing analytical detection limits is crucial. Common methods to do so are suitable only for variables with continuous distributions. Because count data for microplastic particles is a discrete variable following the Poisson distribution, currently-used approaches for estimating the detection limit in microplastics analysis are inadequate. Here we evaluate detection limits with techniques for low-level discrete observations to develop proper approaches for estimating the minimum detectable amount (MDA) in microplastic particle analysis, using blank sample data from an interlaboratory calibration exercise for clean water (representing drinking water), dirty water (ambient water), sediment (porous media) and fish tissue (biotic tissues). Two MDAs are applicable: MDAA to evaluate analytical methods, estimated with replicate blank data; and MDAB for individual sample batches, calculated with a single blank count. For illustrative purposes, this dataset's overall MDAA values were 164 counts (clean water), 88 (dirty water), 192 (sediment), and 379 (tissue). MDA values should be reported on a laboratory-specific basis and for individual size fractions, as this provides more useful information about capabilities of individual laboratories. This is due to wide variation in blank levels, as noted by MDAB values (i.e., among different laboratories) from 14 to 158 (clean water), 9 to 86 (dirty water, 9 to 186 (sediment), and 9 to 247 (tissue). MDA values for fibers were considerably greater than for non-fibers, suggesting that separate MDA values should be reported. This study provides a guideline for estimation and application of microplastics MDA for more robust data to support research activities and environmental management decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanzinie发布了新的文献求助10
刚刚
tad81发布了新的文献求助10
1秒前
awu发布了新的文献求助10
1秒前
bzlsgjdm完成签到 ,获得积分10
1秒前
1秒前
2秒前
YJ发布了新的文献求助10
2秒前
zhang发布了新的文献求助10
3秒前
wuxunxun2015发布了新的文献求助30
3秒前
3秒前
zyl发布了新的文献求助10
3秒前
科研通AI5应助dyyy采纳,获得10
3秒前
罗杰完成签到,获得积分10
3秒前
科研蜗牛完成签到,获得积分10
5秒前
脑洞疼应助xushanqi采纳,获得10
5秒前
6秒前
Hailey发布了新的文献求助10
6秒前
啦啦啦发布了新的文献求助10
7秒前
7秒前
传奇3应助爱笑秋白采纳,获得10
7秒前
在水一方应助Maria采纳,获得10
7秒前
科研通AI5应助王小小采纳,获得10
7秒前
awu完成签到,获得积分10
7秒前
黑暗系发布了新的文献求助10
8秒前
8秒前
熹微完成签到,获得积分10
8秒前
吴海彤发布了新的文献求助10
8秒前
9秒前
科研通AI5应助小小石头人采纳,获得10
9秒前
哦啦啦发布了新的文献求助10
9秒前
小林太郎应助叨叨哥采纳,获得30
9秒前
10秒前
归尘发布了新的文献求助30
10秒前
求助发布了新的文献求助10
10秒前
10秒前
小程发布了新的文献求助10
11秒前
yh发布了新的文献求助10
11秒前
一一应助YJ采纳,获得10
11秒前
兔斯基完成签到,获得积分10
11秒前
九日完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543260
求助须知:如何正确求助?哪些是违规求助? 3120651
关于积分的说明 9343550
捐赠科研通 2818657
什么是DOI,文献DOI怎么找? 1549757
邀请新用户注册赠送积分活动 722221
科研通“疑难数据库(出版商)”最低求助积分说明 713078