Classification and regression-based convolutional neural network and long short-term memory configuration for bridge damage identification using long-term monitoring vibration data

卷积神经网络 计算机科学 人工智能 模式识别(心理学) 桥(图论) 均方误差 回归 鉴定(生物学) 人工神经网络 混淆矩阵 机器学习 期限(时间) 统计 数学 植物 物理 内科学 生物 医学 量子力学
作者
Fadel Yessoufou,Jinsong Zhu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:22 (6): 4027-4054 被引量:25
标识
DOI:10.1177/14759217231161811
摘要

Considerable attention has recently been focused on classification and regression-based convolutional neural network (CNN) and long short-term memory (LSTM) due to their excellent performance in capturing complex spatial and temporal information characteristics for structural damage identification. However, few studies have considered structural damage identification as a classification and regression problem. In addition, bridges in practical engineering are vulnerable to various environmental and vehicle loading conditions. Hence, this study proposed a new two-stage CNN–LSTM configuration for bridge damage identification using vibration data considering the influence of temperatures. First, a classification-based CNN–LSTM is designed to perform multiclass damage detection tasks, and then a regression-based CNN–LSTM is developed for damage localization and severity prediction tasks. The performance of the proposed damage identification method was evaluated through a simulation dataset of a concrete highway bridge model and a field experiment dataset of Z24-bridge (Switzerland). In addition, a set of statistical evaluation metrics such as sparse categorical cross-entropy loss, accuracy, confusion matrix, mean squared loss, mean absolute error, mean absolute percentage error, and coefficient of determination were used to compare the damage identification performance of the proposed CNN–LSTM configuration with a regular CNN model and conventional machine learning (ML) algorithms. Prediction results indicate that the proposed CNN–LSTM model outperforms the regular CNN model and conventional ML algorithms for bridge damage identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆米花发布了新的文献求助10
刚刚
搜集达人应助迷人问兰采纳,获得10
1秒前
ji完成签到,获得积分10
1秒前
桐桐应助遐蝶采纳,获得10
1秒前
ww完成签到,获得积分10
1秒前
慕青应助liuzengzhang666采纳,获得10
2秒前
2秒前
qwenrou发布了新的文献求助10
2秒前
3秒前
爱吃简便泡菜的小智完成签到 ,获得积分10
3秒前
7473完成签到,获得积分10
4秒前
zheng完成签到,获得积分10
4秒前
4秒前
不才完成签到,获得积分10
5秒前
5秒前
iNk应助NAN采纳,获得10
5秒前
所所应助阿星捌采纳,获得10
6秒前
pretty完成签到,获得积分10
6秒前
洁净的天思完成签到,获得积分10
6秒前
Triste发布了新的文献求助10
7秒前
8秒前
科研通AI2S应助Godnian采纳,获得10
8秒前
8秒前
匆匆发布了新的文献求助10
8秒前
8秒前
squirrelcone完成签到 ,获得积分10
9秒前
9秒前
Owen应助kyukyubiu采纳,获得10
9秒前
无限的隶发布了新的文献求助10
10秒前
elsazhou发布了新的文献求助10
10秒前
奋斗蚂蚁完成签到,获得积分10
10秒前
不曾留步完成签到,获得积分10
12秒前
爆米花应助trial采纳,获得10
12秒前
12秒前
完美世界应助翁雁丝采纳,获得10
12秒前
13秒前
猪猪hero应助快乐的小天鹅采纳,获得10
13秒前
佐佐的2xL完成签到,获得积分10
13秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951455
求助须知:如何正确求助?哪些是违规求助? 3496905
关于积分的说明 11085004
捐赠科研通 3227298
什么是DOI,文献DOI怎么找? 1784400
邀请新用户注册赠送积分活动 868422
科研通“疑难数据库(出版商)”最低求助积分说明 801122