螺旋(腹足类)
戊烷
化学
立体化学
组合化学
有机化学
生物
蜗牛
生态学
作者
Lydia I. Dewis,Madhavachary Rudrakshula,Christopher Williams,Elisabetta Chiarparin,Eddie L. Myers,Craig P. Butts,Varinder K. Aggarwal
标识
DOI:10.1002/anie.202301209
摘要
With over 60 % of protein-protein interfaces featuring an α-helix, the use of α-helix mimetics as inhibitors of these interactions is a prevalent therapeutic strategy. However, methods to control the conformation of mimetics, thus enabling maximum efficacy, can be restrictive. Alternatively, conformation can be controlled through the introduction of destabilizing syn-pentane interactions. This tactic, which is often adopted by Nature, is not a common feature of lead optimization owing to the significant synthetic effort required. Through assembly-line synthesis with NMR and computational analysis, we have shown that alternating syn-anti configured contiguously substituted hydrocarbons, by avoiding syn-pentane interactions, adopt well-defined conformations that present functional groups in an arrangement that mimics the α-helix. The design of a p53 mimetic that binds to Mdm2 with moderate to good affinity, demonstrates the therapeutic promise of these scaffolds.
科研通智能强力驱动
Strongly Powered by AbleSci AI