重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Application of deep learning diagnosis for multiple traits sorting in peach fruit

特质 RGB颜色模型 肉体 人工智能 卷积神经网络 深度学习 分类 模式识别(心理学) 机器学习 计算机科学 数学 生物 园艺 算法 程序设计语言
作者
Kanae Masuda,Rika Uchida,Naoko Fujita,Yoshiaki Miyamoto,Takahiro Yasue,Yasutaka Kubo,Koichiro Ushijima,Seiichi Uchida,Takashi Akagi
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:201: 112348-112348 被引量:10
标识
DOI:10.1016/j.postharvbio.2023.112348
摘要

Fruit quality is determined by multiple complex traits, which are difficult to diagnose by simple criteria and often require expert skills with a long experience. Nevertheless, current fruit sorting systems need a non-destructive, costless, and more rapid evaluation of fruit qualities. For peach, although many techniques have been developed for diagnosing fruit (internal) traits that determine commercial values, those techniques often require special facilities with high costs or take a long time for an assessment. Our study aimed to apply deep learning technology to evaluate multiple peach fruit traits using only simple RGB images for practical applications. We targeted seven fruit traits fundamentally involving commercial fruit quality; skin color, flesh firmness, sugar content, and four internal disorders, including colorless early softening, split-pit, watercore, and damage from peach fruit moth. We performed binary classification and regression analysis for these traits by convolutional neural networks (CNNs). Binary classification is performed to judge whether a fruit trait exceeds a threshold or not for a given image. Regression analysis is performed to estimate the degree of a trait quantitatively. Their results suggested that CNNs can successfully diagnose multiple fruit traits and predict quantitative values from RGB images. We also applied an explainable AI (X-AI) technique to spot the hypothetical symptoms for each trait on a fruit image, giving novel interpretations for physiological reactions associated with each fruit trait.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qazxswedc完成签到,获得积分20
刚刚
1秒前
Ava应助YJ采纳,获得10
1秒前
2秒前
4秒前
5秒前
醉熏的以云完成签到,获得积分10
5秒前
斐嘿嘿完成签到,获得积分10
5秒前
多情高丽完成签到 ,获得积分10
6秒前
hezaly发布了新的文献求助10
6秒前
Lucas应助成就的曼凡采纳,获得10
6秒前
6秒前
小蘑菇应助含蓄傲珊采纳,获得10
6秒前
555完成签到,获得积分10
7秒前
动听的雪碧完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
9秒前
徐嘎嘎发布了新的文献求助10
11秒前
12秒前
善良的达完成签到,获得积分10
13秒前
yumi0826完成签到,获得积分10
14秒前
YJ发布了新的文献求助10
14秒前
14秒前
honghong1992发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
16秒前
李健的小迷弟应助馨妈采纳,获得10
17秒前
hezaly完成签到,获得积分20
17秒前
贾雯倩关注了科研通微信公众号
17秒前
明天完成签到,获得积分10
17秒前
冷艳的紫寒完成签到,获得积分20
18秒前
18秒前
YJ完成签到,获得积分10
19秒前
三水完成签到,获得积分20
19秒前
专注越彬完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468217
求助须知:如何正确求助?哪些是违规求助? 4571659
关于积分的说明 14331127
捐赠科研通 4498190
什么是DOI,文献DOI怎么找? 2464368
邀请新用户注册赠送积分活动 1453089
关于科研通互助平台的介绍 1427758