Application of deep learning diagnosis for multiple traits sorting in peach fruit

特质 RGB颜色模型 肉体 人工智能 卷积神经网络 深度学习 分类 模式识别(心理学) 机器学习 计算机科学 数学 生物 园艺 算法 程序设计语言
作者
Kanae Masuda,Rika Uchida,Naoko Fujita,Yoshiaki Miyamoto,Takahiro Yasue,Yasutaka Kubo,Koichiro Ushijima,Seiichi Uchida,Takashi Akagi
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:201: 112348-112348 被引量:10
标识
DOI:10.1016/j.postharvbio.2023.112348
摘要

Fruit quality is determined by multiple complex traits, which are difficult to diagnose by simple criteria and often require expert skills with a long experience. Nevertheless, current fruit sorting systems need a non-destructive, costless, and more rapid evaluation of fruit qualities. For peach, although many techniques have been developed for diagnosing fruit (internal) traits that determine commercial values, those techniques often require special facilities with high costs or take a long time for an assessment. Our study aimed to apply deep learning technology to evaluate multiple peach fruit traits using only simple RGB images for practical applications. We targeted seven fruit traits fundamentally involving commercial fruit quality; skin color, flesh firmness, sugar content, and four internal disorders, including colorless early softening, split-pit, watercore, and damage from peach fruit moth. We performed binary classification and regression analysis for these traits by convolutional neural networks (CNNs). Binary classification is performed to judge whether a fruit trait exceeds a threshold or not for a given image. Regression analysis is performed to estimate the degree of a trait quantitatively. Their results suggested that CNNs can successfully diagnose multiple fruit traits and predict quantitative values from RGB images. We also applied an explainable AI (X-AI) technique to spot the hypothetical symptoms for each trait on a fruit image, giving novel interpretations for physiological reactions associated with each fruit trait.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
汉堡包应助xueshulang采纳,获得10
刚刚
2秒前
Sylvia发布了新的文献求助30
2秒前
3秒前
123123发布了新的文献求助10
3秒前
研友_VZG7GZ应助777采纳,获得10
3秒前
苹果夜梦完成签到 ,获得积分10
3秒前
Czf完成签到 ,获得积分10
4秒前
飞快的梦山完成签到,获得积分10
5秒前
nenoaowu发布了新的文献求助10
5秒前
5秒前
ppyyg发布了新的文献求助10
5秒前
8秒前
8秒前
英姑应助五五乐采纳,获得10
8秒前
领导范儿应助我的小k8采纳,获得10
8秒前
星辰大海应助nenoaowu采纳,获得10
8秒前
queengause完成签到,获得积分10
9秒前
沉静丹寒发布了新的文献求助10
9秒前
mpshupi完成签到,获得积分10
9秒前
深情安青应助小化采纳,获得10
10秒前
zho应助等待冰之采纳,获得10
10秒前
奥特曼黑黑完成签到,获得积分10
10秒前
张三完成签到,获得积分10
11秒前
铜锣湾小研仔完成签到,获得积分0
12秒前
于鱼完成签到,获得积分10
13秒前
繁星长明应助薄荷味采纳,获得20
13秒前
共享精神应助李彦采纳,获得10
14秒前
NexusExplorer应助沉静丹寒采纳,获得10
16秒前
王天宇完成签到,获得积分10
16秒前
星辰大海应助xuan采纳,获得10
16秒前
举個栗子完成签到,获得积分10
16秒前
17秒前
李健的粉丝团团长应助lll采纳,获得10
18秒前
19秒前
19秒前
19秒前
大个应助科研界星辰采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589801
求助须知:如何正确求助?哪些是违规求助? 4674367
关于积分的说明 14793421
捐赠科研通 4629109
什么是DOI,文献DOI怎么找? 2532421
邀请新用户注册赠送积分活动 1501070
关于科研通互助平台的介绍 1468487