Application of deep learning diagnosis for multiple traits sorting in peach fruit

特质 RGB颜色模型 肉体 人工智能 卷积神经网络 深度学习 分类 模式识别(心理学) 机器学习 计算机科学 数学 生物 园艺 算法 程序设计语言
作者
Kanae Masuda,Rika Uchida,Naoko Fujita,Yoshiaki Miyamoto,Takahiro Yasue,Yasutaka Kubo,Koichiro Ushijima,Seiichi Uchida,Takashi Akagi
出处
期刊:Postharvest Biology and Technology [Elsevier BV]
卷期号:201: 112348-112348 被引量:10
标识
DOI:10.1016/j.postharvbio.2023.112348
摘要

Fruit quality is determined by multiple complex traits, which are difficult to diagnose by simple criteria and often require expert skills with a long experience. Nevertheless, current fruit sorting systems need a non-destructive, costless, and more rapid evaluation of fruit qualities. For peach, although many techniques have been developed for diagnosing fruit (internal) traits that determine commercial values, those techniques often require special facilities with high costs or take a long time for an assessment. Our study aimed to apply deep learning technology to evaluate multiple peach fruit traits using only simple RGB images for practical applications. We targeted seven fruit traits fundamentally involving commercial fruit quality; skin color, flesh firmness, sugar content, and four internal disorders, including colorless early softening, split-pit, watercore, and damage from peach fruit moth. We performed binary classification and regression analysis for these traits by convolutional neural networks (CNNs). Binary classification is performed to judge whether a fruit trait exceeds a threshold or not for a given image. Regression analysis is performed to estimate the degree of a trait quantitatively. Their results suggested that CNNs can successfully diagnose multiple fruit traits and predict quantitative values from RGB images. We also applied an explainable AI (X-AI) technique to spot the hypothetical symptoms for each trait on a fruit image, giving novel interpretations for physiological reactions associated with each fruit trait.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助情长不过时光采纳,获得10
刚刚
王含爽发布了新的文献求助10
刚刚
ding应助YouD采纳,获得10
1秒前
1秒前
2秒前
微笑寻凝发布了新的文献求助10
3秒前
ding应助biubiu26采纳,获得10
3秒前
陈酒关注了科研通微信公众号
5秒前
rotator发布了新的文献求助10
7秒前
8秒前
8秒前
ldj6670完成签到,获得积分10
9秒前
10秒前
阿可阿可完成签到,获得积分10
10秒前
ikun在此完成签到,获得积分10
10秒前
勤劳的老九应助JW采纳,获得10
11秒前
11秒前
11秒前
hhh发布了新的文献求助10
12秒前
12秒前
丫丫完成签到,获得积分10
12秒前
yx_cheng应助zzt采纳,获得10
13秒前
14秒前
14秒前
LTT完成签到,获得积分10
14秒前
biubiu26发布了新的文献求助10
15秒前
元元完成签到,获得积分10
15秒前
16秒前
WWWUBING发布了新的文献求助10
17秒前
在水一方应助Enuo采纳,获得10
17秒前
箫笛发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
陈兵关注了科研通微信公众号
18秒前
CipherSage应助moumou采纳,获得10
19秒前
11发布了新的文献求助10
19秒前
Slhy完成签到 ,获得积分10
19秒前
粉红小企鹅完成签到,获得积分10
20秒前
shensiang发布了新的文献求助30
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164677
捐赠科研通 3247651
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498