Application of deep learning diagnosis for multiple traits sorting in peach fruit

特质 RGB颜色模型 肉体 人工智能 卷积神经网络 深度学习 分类 模式识别(心理学) 机器学习 计算机科学 数学 生物 园艺 算法 程序设计语言
作者
Kanae Masuda,Rika Uchida,Naoko Fujita,Yoshiaki Miyamoto,Takahiro Yasue,Yasutaka Kubo,Koichiro Ushijima,Seiichi Uchida,Takashi Akagi
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:201: 112348-112348 被引量:10
标识
DOI:10.1016/j.postharvbio.2023.112348
摘要

Fruit quality is determined by multiple complex traits, which are difficult to diagnose by simple criteria and often require expert skills with a long experience. Nevertheless, current fruit sorting systems need a non-destructive, costless, and more rapid evaluation of fruit qualities. For peach, although many techniques have been developed for diagnosing fruit (internal) traits that determine commercial values, those techniques often require special facilities with high costs or take a long time for an assessment. Our study aimed to apply deep learning technology to evaluate multiple peach fruit traits using only simple RGB images for practical applications. We targeted seven fruit traits fundamentally involving commercial fruit quality; skin color, flesh firmness, sugar content, and four internal disorders, including colorless early softening, split-pit, watercore, and damage from peach fruit moth. We performed binary classification and regression analysis for these traits by convolutional neural networks (CNNs). Binary classification is performed to judge whether a fruit trait exceeds a threshold or not for a given image. Regression analysis is performed to estimate the degree of a trait quantitatively. Their results suggested that CNNs can successfully diagnose multiple fruit traits and predict quantitative values from RGB images. We also applied an explainable AI (X-AI) technique to spot the hypothetical symptoms for each trait on a fruit image, giving novel interpretations for physiological reactions associated with each fruit trait.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大鹅发布了新的文献求助10
刚刚
吴波丹发布了新的文献求助10
刚刚
romio发布了新的文献求助10
刚刚
1秒前
3秒前
3秒前
孔雨珍发布了新的文献求助10
5秒前
6秒前
科研dog完成签到,获得积分10
6秒前
6秒前
6秒前
帅b发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
bkagyin应助舒服的皮皮虾采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
蓝天应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得30
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
蓝天应助科研通管家采纳,获得10
10秒前
michen发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
来日昭昭应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
yznfly应助科研通管家采纳,获得20
10秒前
蓝天应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675662
求助须知:如何正确求助?哪些是违规求助? 4948205
关于积分的说明 15154348
捐赠科研通 4834937
什么是DOI,文献DOI怎么找? 2589774
邀请新用户注册赠送积分活动 1543545
关于科研通互助平台的介绍 1501282