Application of deep learning diagnosis for multiple traits sorting in peach fruit

特质 RGB颜色模型 肉体 人工智能 卷积神经网络 深度学习 分类 模式识别(心理学) 机器学习 计算机科学 数学 生物 园艺 算法 程序设计语言
作者
Kanae Masuda,Rika Uchida,Naoko Fujita,Yoshiaki Miyamoto,Takahiro Yasue,Yasutaka Kubo,Koichiro Ushijima,Seiichi Uchida,Takashi Akagi
出处
期刊:Postharvest Biology and Technology [Elsevier BV]
卷期号:201: 112348-112348 被引量:10
标识
DOI:10.1016/j.postharvbio.2023.112348
摘要

Fruit quality is determined by multiple complex traits, which are difficult to diagnose by simple criteria and often require expert skills with a long experience. Nevertheless, current fruit sorting systems need a non-destructive, costless, and more rapid evaluation of fruit qualities. For peach, although many techniques have been developed for diagnosing fruit (internal) traits that determine commercial values, those techniques often require special facilities with high costs or take a long time for an assessment. Our study aimed to apply deep learning technology to evaluate multiple peach fruit traits using only simple RGB images for practical applications. We targeted seven fruit traits fundamentally involving commercial fruit quality; skin color, flesh firmness, sugar content, and four internal disorders, including colorless early softening, split-pit, watercore, and damage from peach fruit moth. We performed binary classification and regression analysis for these traits by convolutional neural networks (CNNs). Binary classification is performed to judge whether a fruit trait exceeds a threshold or not for a given image. Regression analysis is performed to estimate the degree of a trait quantitatively. Their results suggested that CNNs can successfully diagnose multiple fruit traits and predict quantitative values from RGB images. We also applied an explainable AI (X-AI) technique to spot the hypothetical symptoms for each trait on a fruit image, giving novel interpretations for physiological reactions associated with each fruit trait.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪耀吨吨完成签到,获得积分10
1秒前
1秒前
逍遥完成签到,获得积分10
1秒前
2秒前
圈圈完成签到,获得积分10
3秒前
芯止谭轩完成签到,获得积分10
4秒前
黑色幽默完成签到 ,获得积分10
4秒前
丘比特应助LL采纳,获得10
4秒前
gecumk发布了新的文献求助10
7秒前
7秒前
甜美梦槐发布了新的文献求助10
7秒前
8秒前
星辰大海应助Tracer采纳,获得10
8秒前
逍遥完成签到,获得积分10
9秒前
Tristan完成签到 ,获得积分10
9秒前
丽平发布了新的文献求助10
10秒前
10秒前
11秒前
yeah18完成签到 ,获得积分10
12秒前
ciallo完成签到,获得积分10
13秒前
连渡完成签到,获得积分10
13秒前
13秒前
及时雨完成签到 ,获得积分10
14秒前
枪王阿绣完成签到 ,获得积分10
14秒前
yuyuyu完成签到,获得积分10
14秒前
gecumk完成签到,获得积分10
15秒前
悦耳亦云完成签到 ,获得积分10
16秒前
16秒前
16秒前
犹豫大侠发布了新的文献求助10
16秒前
tcmlida完成签到,获得积分10
16秒前
OMIT完成签到,获得积分10
16秒前
17秒前
17秒前
群青完成签到 ,获得积分10
20秒前
20秒前
易琚完成签到,获得积分10
20秒前
20秒前
西西发布了新的文献求助10
20秒前
八九完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911110
求助须知:如何正确求助?哪些是违规求助? 4186617
关于积分的说明 13000608
捐赠科研通 3954386
什么是DOI,文献DOI怎么找? 2168285
邀请新用户注册赠送积分活动 1186699
关于科研通互助平台的介绍 1094037