Application of deep learning diagnosis for multiple traits sorting in peach fruit

特质 RGB颜色模型 肉体 人工智能 卷积神经网络 深度学习 分类 模式识别(心理学) 机器学习 计算机科学 数学 生物 园艺 算法 程序设计语言
作者
Kanae Masuda,Rika Uchida,Naoko Fujita,Yoshiaki Miyamoto,Takahiro Yasue,Yasutaka Kubo,Koichiro Ushijima,Seiichi Uchida,Takashi Akagi
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:201: 112348-112348 被引量:10
标识
DOI:10.1016/j.postharvbio.2023.112348
摘要

Fruit quality is determined by multiple complex traits, which are difficult to diagnose by simple criteria and often require expert skills with a long experience. Nevertheless, current fruit sorting systems need a non-destructive, costless, and more rapid evaluation of fruit qualities. For peach, although many techniques have been developed for diagnosing fruit (internal) traits that determine commercial values, those techniques often require special facilities with high costs or take a long time for an assessment. Our study aimed to apply deep learning technology to evaluate multiple peach fruit traits using only simple RGB images for practical applications. We targeted seven fruit traits fundamentally involving commercial fruit quality; skin color, flesh firmness, sugar content, and four internal disorders, including colorless early softening, split-pit, watercore, and damage from peach fruit moth. We performed binary classification and regression analysis for these traits by convolutional neural networks (CNNs). Binary classification is performed to judge whether a fruit trait exceeds a threshold or not for a given image. Regression analysis is performed to estimate the degree of a trait quantitatively. Their results suggested that CNNs can successfully diagnose multiple fruit traits and predict quantitative values from RGB images. We also applied an explainable AI (X-AI) technique to spot the hypothetical symptoms for each trait on a fruit image, giving novel interpretations for physiological reactions associated with each fruit trait.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助火星上香菇采纳,获得10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
4秒前
西门紫雪发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
Kai发布了新的文献求助10
5秒前
qiqi完成签到,获得积分10
5秒前
知知发布了新的文献求助10
5秒前
Bingbingbing发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
麦瑜小昕完成签到,获得积分10
6秒前
6秒前
6秒前
丁丁车完成签到,获得积分10
7秒前
我是老大应助泡泡采纳,获得50
7秒前
7秒前
wanci应助LuxuryQ采纳,获得10
7秒前
SciGPT应助mwang采纳,获得10
7秒前
9秒前
mirror发布了新的文献求助10
9秒前
xulife完成签到 ,获得积分10
9秒前
fedehe发布了新的文献求助10
10秒前
我是老大应助西门紫雪采纳,获得10
10秒前
雨沐风完成签到,获得积分10
10秒前
gxy完成签到,获得积分10
11秒前
Cythina完成签到,获得积分10
11秒前
KaiZI完成签到,获得积分10
11秒前
小石头发布了新的文献求助10
12秒前
DE完成签到,获得积分20
12秒前
科研通AI6应助Lou1s采纳,获得10
12秒前
hhh发布了新的文献求助10
12秒前
12秒前
12秒前
啦啦啦啦发布了新的文献求助10
13秒前
时光完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666928
求助须知:如何正确求助?哪些是违规求助? 4883518
关于积分的说明 15118330
捐赠科研通 4825864
什么是DOI,文献DOI怎么找? 2583597
邀请新用户注册赠送积分活动 1537760
关于科研通互助平台的介绍 1495956