Application of deep learning diagnosis for multiple traits sorting in peach fruit

特质 RGB颜色模型 肉体 人工智能 卷积神经网络 深度学习 分类 模式识别(心理学) 机器学习 计算机科学 数学 生物 园艺 算法 程序设计语言
作者
Kanae Masuda,Rika Uchida,Naoko Fujita,Yoshiaki Miyamoto,Takahiro Yasue,Yasutaka Kubo,Koichiro Ushijima,Seiichi Uchida,Takashi Akagi
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:201: 112348-112348 被引量:10
标识
DOI:10.1016/j.postharvbio.2023.112348
摘要

Fruit quality is determined by multiple complex traits, which are difficult to diagnose by simple criteria and often require expert skills with a long experience. Nevertheless, current fruit sorting systems need a non-destructive, costless, and more rapid evaluation of fruit qualities. For peach, although many techniques have been developed for diagnosing fruit (internal) traits that determine commercial values, those techniques often require special facilities with high costs or take a long time for an assessment. Our study aimed to apply deep learning technology to evaluate multiple peach fruit traits using only simple RGB images for practical applications. We targeted seven fruit traits fundamentally involving commercial fruit quality; skin color, flesh firmness, sugar content, and four internal disorders, including colorless early softening, split-pit, watercore, and damage from peach fruit moth. We performed binary classification and regression analysis for these traits by convolutional neural networks (CNNs). Binary classification is performed to judge whether a fruit trait exceeds a threshold or not for a given image. Regression analysis is performed to estimate the degree of a trait quantitatively. Their results suggested that CNNs can successfully diagnose multiple fruit traits and predict quantitative values from RGB images. We also applied an explainable AI (X-AI) technique to spot the hypothetical symptoms for each trait on a fruit image, giving novel interpretations for physiological reactions associated with each fruit trait.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得30
1秒前
耳东完成签到 ,获得积分10
1秒前
0109完成签到,获得积分10
2秒前
爱笑的鱼完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
小凯同学完成签到,获得积分10
4秒前
Cylair完成签到,获得积分10
5秒前
勤奋完成签到 ,获得积分10
5秒前
余春完成签到,获得积分10
5秒前
影像大侠完成签到,获得积分10
5秒前
面壁的章北海完成签到,获得积分10
8秒前
谢谢给量子星尘的求助进行了留言
8秒前
小橘子完成签到 ,获得积分10
8秒前
刘较瘦完成签到,获得积分10
12秒前
许自通完成签到,获得积分10
13秒前
Samuel98完成签到 ,获得积分10
15秒前
江湖应助MissingParadise采纳,获得10
16秒前
夏虫完成签到,获得积分10
20秒前
nano完成签到 ,获得积分10
20秒前
兴奋雁风完成签到 ,获得积分10
20秒前
glzhou1975完成签到 ,获得积分10
21秒前
浅忆晨曦完成签到 ,获得积分10
21秒前
wq完成签到,获得积分10
23秒前
流星雨完成签到 ,获得积分10
23秒前
陈豆豆完成签到 ,获得积分10
23秒前
zyz完成签到 ,获得积分10
27秒前
和谐的冬莲完成签到 ,获得积分10
30秒前
30秒前
八点必起完成签到,获得积分0
32秒前
echo完成签到 ,获得积分10
32秒前
XZZH完成签到,获得积分10
33秒前
木木完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671581
求助须知:如何正确求助?哪些是违规求助? 4920068
关于积分的说明 15135054
捐赠科研通 4830410
什么是DOI,文献DOI怎么找? 2587061
邀请新用户注册赠送积分活动 1540682
关于科研通互助平台的介绍 1498986