Application of deep learning diagnosis for multiple traits sorting in peach fruit

特质 RGB颜色模型 肉体 人工智能 卷积神经网络 深度学习 分类 模式识别(心理学) 机器学习 计算机科学 数学 生物 园艺 算法 程序设计语言
作者
Kanae Masuda,Rika Uchida,Naoko Fujita,Yoshiaki Miyamoto,Takahiro Yasue,Yasutaka Kubo,Koichiro Ushijima,Seiichi Uchida,Takashi Akagi
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:201: 112348-112348 被引量:10
标识
DOI:10.1016/j.postharvbio.2023.112348
摘要

Fruit quality is determined by multiple complex traits, which are difficult to diagnose by simple criteria and often require expert skills with a long experience. Nevertheless, current fruit sorting systems need a non-destructive, costless, and more rapid evaluation of fruit qualities. For peach, although many techniques have been developed for diagnosing fruit (internal) traits that determine commercial values, those techniques often require special facilities with high costs or take a long time for an assessment. Our study aimed to apply deep learning technology to evaluate multiple peach fruit traits using only simple RGB images for practical applications. We targeted seven fruit traits fundamentally involving commercial fruit quality; skin color, flesh firmness, sugar content, and four internal disorders, including colorless early softening, split-pit, watercore, and damage from peach fruit moth. We performed binary classification and regression analysis for these traits by convolutional neural networks (CNNs). Binary classification is performed to judge whether a fruit trait exceeds a threshold or not for a given image. Regression analysis is performed to estimate the degree of a trait quantitatively. Their results suggested that CNNs can successfully diagnose multiple fruit traits and predict quantitative values from RGB images. We also applied an explainable AI (X-AI) technique to spot the hypothetical symptoms for each trait on a fruit image, giving novel interpretations for physiological reactions associated with each fruit trait.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FadeSv完成签到,获得积分10
刚刚
sulin关注了科研通微信公众号
1秒前
NIHAO发布了新的文献求助10
1秒前
Chris发布了新的文献求助10
2秒前
不舍天真发布了新的文献求助10
2秒前
2秒前
酷波er应助熊猫采纳,获得10
2秒前
年轻迪奥发布了新的文献求助10
4秒前
4秒前
顾矜应助王艺霖采纳,获得10
4秒前
NI发布了新的文献求助10
5秒前
FIREWORK完成签到,获得积分10
5秒前
lwb完成签到,获得积分10
6秒前
6秒前
小洋关注了科研通微信公众号
6秒前
搜集达人应助LBQ采纳,获得10
7秒前
求知的周发布了新的文献求助30
11秒前
11秒前
彩色耳机完成签到,获得积分10
11秒前
平常兰发布了新的文献求助10
12秒前
12秒前
麦地娜发布了新的文献求助10
13秒前
14秒前
烟花应助害羞的天真采纳,获得10
14秒前
EliGolden完成签到,获得积分10
15秒前
义气的翅膀完成签到,获得积分10
16秒前
16秒前
AAA房地产小王完成签到,获得积分10
16秒前
16秒前
情情晴情情完成签到,获得积分10
17秒前
迷路雨寒应助张瑶采纳,获得100
17秒前
cccc发布了新的文献求助10
18秒前
温暖发布了新的文献求助10
18秒前
Lucas应助浅尝离白采纳,获得10
19秒前
19秒前
所所应助vera采纳,获得10
19秒前
深情安青应助浅尝离白采纳,获得30
19秒前
英俊的铭应助浅尝离白采纳,获得10
19秒前
SciGPT应助浅尝离白采纳,获得10
19秒前
Hello应助浅尝离白采纳,获得50
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049