Diagnosis of Interproximal Caries Lesions in Bitewing Radiographs Using a Deep Convolutional Neural Network-Based Software

接收机工作特性 诊断试验中的似然比 射线照相术 医学 卷积神经网络 预测值 牙科 人工智能 可靠性(半导体) 人工神经网络 置信区间 口腔正畸科 放射科 计算机科学 内科学 量子力学 物理 功率(物理)
作者
Ángel García-Cañas,Mónica Bonfanti-Gris,Sergio Paraíso-Medina,Francisco Martínez‐Rus,Guillermo Pradíes
出处
期刊:Caries Research [Karger Publishers]
卷期号:56 (5-6): 503-511 被引量:11
标识
DOI:10.1159/000527491
摘要

The aim of this study was to evaluate the diagnostic reliability of a web-based artificial intelligence program for the detection of interproximal caries in bitewing radiographs. Three hundred bitewing radiographs of patients were subjected to the evaluation of a convolutional neural network. First, the images were visually evaluated by a previously trained and calibrated operator with radiodiagnosis experience. Then, ground truth was established and was clinically validated. For enamel caries, clinical assessment included a combination of clinical-visual and radiography evaluations. For dentin caries, clinical validation was performed by instrumentally accessing the cavity. Second, the images were uploaded and analyzed by the web-based software. Four different models were established to analyze its evaluations according to the confidence threshold (0-100%) offered by the program: model 1 (values >0% were considered positive and values of 0% were considered negative), model 2 (values ≥25% were considered positive and values <25% were considered negative), model 3 (values ≥50% were considered positive and values <50% were considered negative), and model 4 (values ≥75% were considered positive and values <75% were considered negative). The accuracy rate (A), sensitivity (S), specificity (E), positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR), negative likelihood ratio (NLR), and areas under receiver operating characteristic curves (AUC) were calculated for the four models of agreement with the software. Models showed the following results respectively: A = 70.8%, 82%, 85.6%, 86.1%; S = 87%, 69.8%, 57%, 41.6%; E = 66.3%, 85.4%, 93.7%, 98.5%; PPV = 42%, 57.2%, 71.6%, 88.6%; NPV = 94.8%, 91%, 88.6%, 85.8%; PLR = 2.58, 4.78, 9.05, 27.73; NLR = 0.2, 0.35, 0.46, 0.59; AUC = 0.767, 0.777, 0.753, 0.701. Findings in the present study suggest that the artificial intelligence web-based software provides a good diagnostic reliability on the detection of dental caries. Our study highlighted model 2 for showing the best results to differentiate between healthy teeth and decayed teeth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意代亦完成签到,获得积分10
1秒前
小张完成签到,获得积分10
1秒前
九九完成签到,获得积分10
1秒前
桐桐应助可爱绮采纳,获得30
2秒前
2秒前
babe发布了新的文献求助10
2秒前
聪慧醉卉完成签到 ,获得积分10
3秒前
3秒前
凯蒂宝贝完成签到,获得积分10
3秒前
3秒前
3秒前
小二郎应助and999采纳,获得10
4秒前
蓝桉完成签到,获得积分10
4秒前
5秒前
明理的坤发布了新的文献求助10
5秒前
lhnee完成签到,获得积分20
6秒前
6秒前
Morpheus完成签到,获得积分10
6秒前
ED应助爱撒娇的手套采纳,获得10
7秒前
Cu完成签到 ,获得积分10
7秒前
7秒前
一一发布了新的文献求助10
7秒前
今后应助卡卡西采纳,获得10
9秒前
英俊的铭应助袁气小笼包采纳,获得20
9秒前
隐形曼青应助枝杲采纳,获得10
9秒前
风中若云发布了新的文献求助10
9秒前
9秒前
南医医发布了新的文献求助10
9秒前
10秒前
可爱绮完成签到,获得积分20
10秒前
小王完成签到,获得积分10
10秒前
11秒前
12秒前
Li完成签到,获得积分10
12秒前
12秒前
12秒前
活泼的之槐完成签到,获得积分10
12秒前
小沫完成签到,获得积分10
13秒前
苗条的傲丝完成签到,获得积分10
13秒前
去2完成签到 ,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009462
求助须知:如何正确求助?哪些是违规求助? 3549388
关于积分的说明 11301996
捐赠科研通 3283894
什么是DOI,文献DOI怎么找? 1810448
邀请新用户注册赠送积分活动 886287
科研通“疑难数据库(出版商)”最低求助积分说明 811316