Diagnosis of Interproximal Caries Lesions in Bitewing Radiographs Using a Deep Convolutional Neural Network-Based Software

接收机工作特性 诊断试验中的似然比 射线照相术 医学 卷积神经网络 预测值 牙科 人工智能 可靠性(半导体) 人工神经网络 置信区间 口腔正畸科 放射科 计算机科学 内科学 量子力学 物理 功率(物理)
作者
Ángel García-Cañas,Mónica Bonfanti-Gris,Sergio Paraíso-Medina,Francisco Martínez‐Rus,Guillermo Pradíes
出处
期刊:Caries Research [S. Karger AG]
卷期号:56 (5-6): 503-511 被引量:11
标识
DOI:10.1159/000527491
摘要

The aim of this study was to evaluate the diagnostic reliability of a web-based artificial intelligence program for the detection of interproximal caries in bitewing radiographs. Three hundred bitewing radiographs of patients were subjected to the evaluation of a convolutional neural network. First, the images were visually evaluated by a previously trained and calibrated operator with radiodiagnosis experience. Then, ground truth was established and was clinically validated. For enamel caries, clinical assessment included a combination of clinical-visual and radiography evaluations. For dentin caries, clinical validation was performed by instrumentally accessing the cavity. Second, the images were uploaded and analyzed by the web-based software. Four different models were established to analyze its evaluations according to the confidence threshold (0-100%) offered by the program: model 1 (values >0% were considered positive and values of 0% were considered negative), model 2 (values ≥25% were considered positive and values <25% were considered negative), model 3 (values ≥50% were considered positive and values <50% were considered negative), and model 4 (values ≥75% were considered positive and values <75% were considered negative). The accuracy rate (A), sensitivity (S), specificity (E), positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR), negative likelihood ratio (NLR), and areas under receiver operating characteristic curves (AUC) were calculated for the four models of agreement with the software. Models showed the following results respectively: A = 70.8%, 82%, 85.6%, 86.1%; S = 87%, 69.8%, 57%, 41.6%; E = 66.3%, 85.4%, 93.7%, 98.5%; PPV = 42%, 57.2%, 71.6%, 88.6%; NPV = 94.8%, 91%, 88.6%, 85.8%; PLR = 2.58, 4.78, 9.05, 27.73; NLR = 0.2, 0.35, 0.46, 0.59; AUC = 0.767, 0.777, 0.753, 0.701. Findings in the present study suggest that the artificial intelligence web-based software provides a good diagnostic reliability on the detection of dental caries. Our study highlighted model 2 for showing the best results to differentiate between healthy teeth and decayed teeth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Murphy应助xuxieyu采纳,获得10
3秒前
3秒前
俊秀的卿发布了新的文献求助10
5秒前
6秒前
侯松发布了新的文献求助10
7秒前
减肥为窈窕完成签到,获得积分10
7秒前
天真的棒棒糖完成签到,获得积分20
8秒前
沐风发布了新的文献求助10
8秒前
坦率初柔发布了新的文献求助10
8秒前
欢笑完成签到,获得积分10
9秒前
独特的紫真完成签到,获得积分10
10秒前
10秒前
苦逼化学人完成签到 ,获得积分10
11秒前
Euphoria发布了新的文献求助20
13秒前
MoonFlows应助奋斗天德采纳,获得30
14秒前
HYT发布了新的文献求助10
14秒前
15秒前
shiyi完成签到,获得积分10
17秒前
Hello应助动人的ccc采纳,获得10
18秒前
满意芷珍完成签到,获得积分10
20秒前
20秒前
21秒前
22秒前
小蘑菇应助舒服的踏歌采纳,获得10
22秒前
23秒前
甜蜜的水桃完成签到,获得积分10
24秒前
25秒前
糊涂的凡发布了新的文献求助10
26秒前
ardejiang发布了新的文献求助10
27秒前
27秒前
Lucas应助危机的太英采纳,获得10
32秒前
32秒前
德鲁大叔完成签到,获得积分10
33秒前
动人的ccc发布了新的文献求助10
34秒前
领导范儿应助阿秋采纳,获得10
35秒前
999发布了新的文献求助10
35秒前
36秒前
36秒前
Orange应助鲤鱼谷秋采纳,获得10
38秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157329
求助须知:如何正确求助?哪些是违规求助? 2808824
关于积分的说明 7878475
捐赠科研通 2467158
什么是DOI,文献DOI怎么找? 1313222
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919