作者
Jia Wang,Rongchun Shen,Yueqiang Cao,Wei Li,Jinghong Zhou
摘要
Abstract 1,2‐butanediol (1,2‐BDO) and 1,2‐propanediol (1,2‐PDO) are inevitably side produced in the ethylene glycol (EG) production processes from non‐petroleum routes, but are very difficult to separate by the ordinary distillation method because of the closeness of their boiling temperatures to EG, thus compromise the economy of these processes. The azeotropic distillation process using 1‐octanol (CPO) as an entrainer to separate EG and 1,2‐BDO mixture with or without 1,2‐PDO was studied in this paper. Four binary vapour–liquid equilibrium data of EG‐1,2‐BDO, EG‐CPO, 1,2‐BDO‐CPO, and 1,2‐PDO‐CPO were measured using an Ellis equilibrium kettle and regressed with the thermodynamic model of non‐random two liquid to obtain the corresponding binary interaction parameters. On this basis, azeotropic distillations with CPO as an entrainer were designed to separate EG and 1,2‐BDO with or without 1,2‐PDO. The complete separation processes, including the azeotropic distillation and CPO recovery process consisting of extraction with H 2 O and subsequent distillation, were simulated and optimized with Aspen Plus for both the EG‐1,2‐BDO binary mixture and the EG‐1,2‐BDO‐1,2‐PDO ternary mixture. The simulation results show that the azeotropic distillation method with CPO as an entrainer can effectively separate the mixture of EG‐1,2‐BDO and EG‐1,2‐BDO‐1,2‐PDO, achieving EG of 99.90% purity with 99.98% recovery and 1,2‐BDO of 99.30% purity with 99.45% recovery for the binary mixture, and achieving EG of 99.90% purity with 99.80% recovery, 1,2‐BDO of 99.35% purity with 99.35% recovery, and 1,2‐PDO of 90.59% purity with 94.38% recovery for the ternary mixture. These processes are promising for industrial application and can significantly improve the economy of non‐petroleum EG production.