Diagnostic performance of machine learning models using cell population data for the detection of sepsis: a comparative study

逻辑回归 校准 人工智能 接收机工作特性 机器学习 多层感知器 人口 计算机科学 感知器 败血症 统计 医学 人工神经网络 内科学 数学 环境卫生
作者
Urko Aguirre,Eloísa Urrechaga
出处
期刊:Clinical Chemistry and Laboratory Medicine [De Gruyter]
卷期号:61 (2): 356-365 被引量:8
标识
DOI:10.1515/cclm-2022-0713
摘要

To compare the artificial intelligence algorithms as powerful machine learning methods for evaluating patients with suspected sepsis using data from routinely available blood tests performed on arrival at the hospital. Results were compared with those obtained from the classical logistic regression method.The study group consisted of consecutive patients with fever and suspected infection admitted to the Emergency Department. The complete blood counts (CBC) were acquired using the Mindray BC-6800 Plus analyser (Mindray Diagnostics, Shenzhen, China). Cell Population Data (CPD) were also recorded. The ML and artificial intelligence (AI) models were developed; their performance was evaluated using several indicators, such as the area under the receiver operating curve (AUC), calibration plots and decision curve analysis (DCA).Overall, all the tested approaches obtained an AUC>0.90. The logistic regression (LR) performed well compared to the ML/AI models. The naïve Bayes and the K-nearest neighbour (KNN) methods did not show good calibration properties. The multi-layer perceptron (MLP) model was the best in terms of discrimination, calibration and clinical usefulness.The best performance in the early detection of sepsis was achieved using the ML and AI models. However, external validation studies are needed to strengthen model derivation and procedure updating.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助科研通管家采纳,获得10
刚刚
刚刚
阳光土豆应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
刚刚
小马甲应助知足肠乐采纳,获得10
1秒前
1秒前
1秒前
绵绵冰发布了新的文献求助10
1秒前
小贱人发布了新的文献求助10
1秒前
是小松啊关注了科研通微信公众号
1秒前
2秒前
ding应助大糖糕僧采纳,获得10
2秒前
3秒前
3秒前
zeroone发布了新的文献求助10
3秒前
fifteen应助黑柴是柴采纳,获得10
4秒前
浮生发布了新的文献求助10
4秒前
Konradling完成签到,获得积分10
4秒前
赘婿应助江峰采纳,获得10
4秒前
1874发布了新的文献求助10
7秒前
8秒前
lilycat发布了新的文献求助10
8秒前
8秒前
8秒前
搜集达人应助浮生采纳,获得30
8秒前
寻绿完成签到,获得积分10
9秒前
SimoneAQQ发布了新的文献求助30
11秒前
11秒前
宇宙在你沉睡时消失不见完成签到,获得积分10
11秒前
李昊泽发布了新的文献求助10
11秒前
我是老大应助高挑的宛海采纳,获得10
11秒前
小贱人完成签到,获得积分10
12秒前
hai完成签到,获得积分10
13秒前
15秒前
挽风月发布了新的文献求助10
15秒前
15秒前
111发布了新的文献求助100
15秒前
royan2发布了新的文献求助10
16秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219123
求助须知:如何正确求助?哪些是违规求助? 2868054
关于积分的说明 8159169
捐赠科研通 2535055
什么是DOI,文献DOI怎么找? 1367494
科研通“疑难数据库(出版商)”最低求助积分说明 645052
邀请新用户注册赠送积分活动 618243