Diagnostic performance of machine learning models using cell population data for the detection of sepsis: a comparative study

逻辑回归 校准 人工智能 接收机工作特性 机器学习 多层感知器 人口 计算机科学 感知器 败血症 统计 医学 人工神经网络 内科学 数学 环境卫生
作者
Urko Aguirre,Eloísa Urrechaga
出处
期刊:Clinical Chemistry and Laboratory Medicine [De Gruyter]
卷期号:61 (2): 356-365 被引量:15
标识
DOI:10.1515/cclm-2022-0713
摘要

To compare the artificial intelligence algorithms as powerful machine learning methods for evaluating patients with suspected sepsis using data from routinely available blood tests performed on arrival at the hospital. Results were compared with those obtained from the classical logistic regression method.The study group consisted of consecutive patients with fever and suspected infection admitted to the Emergency Department. The complete blood counts (CBC) were acquired using the Mindray BC-6800 Plus analyser (Mindray Diagnostics, Shenzhen, China). Cell Population Data (CPD) were also recorded. The ML and artificial intelligence (AI) models were developed; their performance was evaluated using several indicators, such as the area under the receiver operating curve (AUC), calibration plots and decision curve analysis (DCA).Overall, all the tested approaches obtained an AUC>0.90. The logistic regression (LR) performed well compared to the ML/AI models. The naïve Bayes and the K-nearest neighbour (KNN) methods did not show good calibration properties. The multi-layer perceptron (MLP) model was the best in terms of discrimination, calibration and clinical usefulness.The best performance in the early detection of sepsis was achieved using the ML and AI models. However, external validation studies are needed to strengthen model derivation and procedure updating.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啵啵龙发布了新的文献求助10
刚刚
沉默棉花糖完成签到,获得积分10
1秒前
鹏程应助拼搏君浩采纳,获得10
2秒前
3秒前
老马哥完成签到 ,获得积分0
3秒前
明月念斯人完成签到 ,获得积分10
5秒前
5秒前
淡然冬灵应助锅铲采纳,获得20
6秒前
Rabbit完成签到 ,获得积分10
8秒前
8秒前
现代书雪发布了新的文献求助10
9秒前
宁霸完成签到,获得积分0
10秒前
deniroming完成签到,获得积分0
14秒前
Jasper应助ZR666888采纳,获得10
15秒前
一行完成签到,获得积分10
15秒前
壮观小懒虫完成签到 ,获得积分10
16秒前
勤恳洙应助现代书雪采纳,获得30
20秒前
26秒前
嘿嘿应助科研通管家采纳,获得10
26秒前
在水一方应助科研通管家采纳,获得10
26秒前
桐桐应助刘慧鑫采纳,获得10
26秒前
NexusExplorer应助科研通管家采纳,获得10
26秒前
26秒前
充电宝应助科研通管家采纳,获得10
26秒前
斯文败类应助科研通管家采纳,获得10
26秒前
bkagyin应助科研通管家采纳,获得10
26秒前
27秒前
现代书雪完成签到,获得积分20
29秒前
30秒前
跳跃小伙完成签到 ,获得积分10
31秒前
31秒前
123345发布了新的文献求助10
32秒前
33秒前
zyyao发布了新的文献求助20
33秒前
流光发布了新的文献求助10
35秒前
Owen应助2022H采纳,获得20
35秒前
zxer发布了新的文献求助10
36秒前
乐观荣轩完成签到,获得积分10
38秒前
刘慧鑫发布了新的文献求助10
39秒前
香蕉觅云应助讨厌乐跑采纳,获得10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868245
求助须知:如何正确求助?哪些是违规求助? 6439836
关于积分的说明 15658050
捐赠科研通 4983670
什么是DOI,文献DOI怎么找? 2687581
邀请新用户注册赠送积分活动 1630242
关于科研通互助平台的介绍 1588346