Diagnostic performance of machine learning models using cell population data for the detection of sepsis: a comparative study

逻辑回归 校准 人工智能 接收机工作特性 机器学习 多层感知器 人口 计算机科学 感知器 败血症 统计 医学 人工神经网络 内科学 数学 环境卫生
作者
Urko Aguirre,Eloísa Urrechaga
出处
期刊:Clinical Chemistry and Laboratory Medicine [De Gruyter]
卷期号:61 (2): 356-365 被引量:15
标识
DOI:10.1515/cclm-2022-0713
摘要

To compare the artificial intelligence algorithms as powerful machine learning methods for evaluating patients with suspected sepsis using data from routinely available blood tests performed on arrival at the hospital. Results were compared with those obtained from the classical logistic regression method.The study group consisted of consecutive patients with fever and suspected infection admitted to the Emergency Department. The complete blood counts (CBC) were acquired using the Mindray BC-6800 Plus analyser (Mindray Diagnostics, Shenzhen, China). Cell Population Data (CPD) were also recorded. The ML and artificial intelligence (AI) models were developed; their performance was evaluated using several indicators, such as the area under the receiver operating curve (AUC), calibration plots and decision curve analysis (DCA).Overall, all the tested approaches obtained an AUC>0.90. The logistic regression (LR) performed well compared to the ML/AI models. The naïve Bayes and the K-nearest neighbour (KNN) methods did not show good calibration properties. The multi-layer perceptron (MLP) model was the best in terms of discrimination, calibration and clinical usefulness.The best performance in the early detection of sepsis was achieved using the ML and AI models. However, external validation studies are needed to strengthen model derivation and procedure updating.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助Cindy采纳,获得10
1秒前
吉星高照应助仍无恙采纳,获得10
1秒前
volcano完成签到,获得积分20
2秒前
2秒前
lll完成签到,获得积分10
4秒前
4秒前
深深关注了科研通微信公众号
4秒前
拾贰完成签到 ,获得积分10
5秒前
XTQ发布了新的文献求助10
5秒前
7秒前
8秒前
8秒前
消音器完成签到,获得积分20
8秒前
Yvonne完成签到 ,获得积分10
8秒前
8秒前
9秒前
11秒前
13秒前
dj完成签到,获得积分10
13秒前
孤鲸游发布了新的文献求助30
14秒前
14秒前
hui发布了新的文献求助10
14秒前
15秒前
笑点低的一一完成签到,获得积分10
15秒前
风趣亦巧完成签到,获得积分10
17秒前
XTQ完成签到,获得积分10
17秒前
PINK完成签到,获得积分10
17秒前
18秒前
隐形曼青应助最善良的人采纳,获得10
19秒前
hui完成签到,获得积分10
20秒前
baobaonaixi完成签到,获得积分10
21秒前
21秒前
23秒前
23秒前
端庄的寄凡完成签到 ,获得积分10
24秒前
Polaris完成签到,获得积分10
24秒前
风趣亦巧发布了新的文献求助10
25秒前
月亮完成签到,获得积分10
25秒前
CHEN完成签到,获得积分10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284055
求助须知:如何正确求助?哪些是违规求助? 4437688
关于积分的说明 13814537
捐赠科研通 4318612
什么是DOI,文献DOI怎么找? 2370475
邀请新用户注册赠送积分活动 1365895
关于科研通互助平台的介绍 1329363