Diagnostic performance of machine learning models using cell population data for the detection of sepsis: a comparative study

逻辑回归 校准 人工智能 接收机工作特性 机器学习 多层感知器 人口 计算机科学 感知器 败血症 统计 医学 人工神经网络 内科学 数学 环境卫生
作者
Urko Aguirre,Eloísa Urrechaga
出处
期刊:Clinical Chemistry and Laboratory Medicine [De Gruyter]
卷期号:61 (2): 356-365 被引量:8
标识
DOI:10.1515/cclm-2022-0713
摘要

To compare the artificial intelligence algorithms as powerful machine learning methods for evaluating patients with suspected sepsis using data from routinely available blood tests performed on arrival at the hospital. Results were compared with those obtained from the classical logistic regression method.The study group consisted of consecutive patients with fever and suspected infection admitted to the Emergency Department. The complete blood counts (CBC) were acquired using the Mindray BC-6800 Plus analyser (Mindray Diagnostics, Shenzhen, China). Cell Population Data (CPD) were also recorded. The ML and artificial intelligence (AI) models were developed; their performance was evaluated using several indicators, such as the area under the receiver operating curve (AUC), calibration plots and decision curve analysis (DCA).Overall, all the tested approaches obtained an AUC>0.90. The logistic regression (LR) performed well compared to the ML/AI models. The naïve Bayes and the K-nearest neighbour (KNN) methods did not show good calibration properties. The multi-layer perceptron (MLP) model was the best in terms of discrimination, calibration and clinical usefulness.The best performance in the early detection of sepsis was achieved using the ML and AI models. However, external validation studies are needed to strengthen model derivation and procedure updating.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨st完成签到,获得积分20
1秒前
ommphey完成签到 ,获得积分10
1秒前
3秒前
梧桐完成签到,获得积分10
3秒前
WJane完成签到,获得积分10
3秒前
huzhu123完成签到,获得积分10
3秒前
merlinsong发布了新的文献求助10
4秒前
烟花应助Luyao采纳,获得10
4秒前
Linsey完成签到,获得积分10
4秒前
ytli发布了新的文献求助30
6秒前
洁净的天德完成签到,获得积分10
7秒前
欢呼阁完成签到,获得积分10
11秒前
李开心完成签到,获得积分10
11秒前
12秒前
lq完成签到,获得积分10
12秒前
12秒前
gudujian870928完成签到,获得积分10
13秒前
Docsiwen完成签到 ,获得积分10
13秒前
小瑄完成签到 ,获得积分10
14秒前
研友_08oa3n完成签到 ,获得积分10
14秒前
满意白卉完成签到 ,获得积分10
15秒前
phoebe发布了新的文献求助10
15秒前
李小小飞完成签到,获得积分10
15秒前
aurora完成签到,获得积分10
15秒前
九湖夷上发布了新的文献求助10
15秒前
MADAO发布了新的文献求助200
15秒前
Frac_er完成签到,获得积分10
15秒前
16秒前
杨羕完成签到,获得积分10
16秒前
嗨嗨嗨完成签到,获得积分10
17秒前
新威宝贝完成签到,获得积分10
17秒前
bettersy完成签到,获得积分10
17秒前
糖糖科研顺利呀完成签到 ,获得积分10
17秒前
xavier完成签到,获得积分10
18秒前
21秒前
肯德鸭完成签到,获得积分10
22秒前
23秒前
ytli完成签到 ,获得积分10
24秒前
Jabowoo完成签到,获得积分10
24秒前
雪雨夜心完成签到,获得积分10
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729223
求助须知:如何正确求助?哪些是违规求助? 3274416
关于积分的说明 9985247
捐赠科研通 2989619
什么是DOI,文献DOI怎么找? 1640667
邀请新用户注册赠送积分活动 779260
科研通“疑难数据库(出版商)”最低求助积分说明 748165