Lightweight Deep Learning Classification Model for Identifying Low-Resolution CT Images of Lung Cancer

肺癌 医学 放射科 腺癌 计算机断层摄影术 肺癌筛查 分类 人工智能 接收机工作特性 癌症 计算机科学 病理 内科学
作者
Shanmugasundaram Marappan,Muhammad Danish Mujib,Adnan Ahmed Siddiqui,Abdul Aziz,Samiullah Khan,Mahesh Singh
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2022: 1-10
标识
DOI:10.1155/2022/3836539
摘要

With an astounding five million fatal cases every year, lung cancer is among the leading causes of mortality worldwide for both men and women. The diagnosis of lung illnesses can benefit from the information a computed tomography (CT) scan can offer. The major goals of this study are to diagnose lung cancer and its seriousness and to identify malignant lung nodules from the provided input lung picture. This paper applies unique deep learning techniques to identify the exact location of the malignant lung nodules. Using a DenseNet model, mixed ground glass is analyzed in low-dose, low-resolution CT scan images of nodules (mGGNs) with a slice thickness of 5 mm in this study. This was done to categorize and identify many histological subtypes of lung cancer. Low-resolution CT scans are used to pathologically classify invasive adenocarcinoma (IAC) and minimally invasive adenocarcinoma (MIA). 105 low-resolution CT images with 5 mm thick slices from 105 patients at Lishui Central Hospital were selected. To detect and distinguish, IAC and MIA, extend and enhance deep learning two- and three-dimensional DenseNet models are used. The two-dimensional DenseNet model was shown to perform much better than the three-dimensional DenseNet model in terms of classification accuracy (76.67%), sensitivity (63.3%), specificity (100%), and area under the receiver operating characteristic curve (0.88). Finding the histological subtypes of persons with lung cancer should aid doctors in making a more precise diagnosis, even if the image quality is not outstanding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lll发布了新的文献求助10
1秒前
ZY发布了新的文献求助10
1秒前
雪白的皮皮虾完成签到,获得积分10
2秒前
宏hong完成签到,获得积分10
3秒前
桐桐应助sarah采纳,获得10
3秒前
脾气暴躁的小兔完成签到,获得积分10
4秒前
4秒前
慕青应助大胆猎豹采纳,获得10
4秒前
huajinoob完成签到,获得积分10
4秒前
anthea完成签到 ,获得积分10
5秒前
5秒前
6秒前
7秒前
深情安青应助Xee采纳,获得10
8秒前
9秒前
11秒前
luodaxia发布了新的文献求助10
11秒前
Ava应助lyy采纳,获得10
11秒前
香蕉秋寒发布了新的文献求助20
12秒前
想大大只完成签到,获得积分10
12秒前
helppppp发布了新的文献求助30
13秒前
sam完成签到 ,获得积分10
14秒前
俭朴连虎发布了新的文献求助10
15秒前
蒙开心完成签到 ,获得积分10
15秒前
风趣的无剑完成签到,获得积分10
15秒前
da白发布了新的文献求助10
16秒前
想跟这个世界讲个道理完成签到,获得积分10
16秒前
隐形曼青应助研友_8y2G0L采纳,获得10
16秒前
orixero应助老实皮卡丘采纳,获得10
17秒前
梦影完成签到 ,获得积分10
17秒前
18秒前
SciGPT应助坚定的雁菱采纳,获得10
19秒前
20秒前
21秒前
22秒前
22秒前
22秒前
22秒前
23秒前
脑洞疼应助美好的睫毛膏采纳,获得10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313270
求助须知:如何正确求助?哪些是违规求助? 2945680
关于积分的说明 8526586
捐赠科研通 2621440
什么是DOI,文献DOI怎么找? 1433542
科研通“疑难数据库(出版商)”最低求助积分说明 665057
邀请新用户注册赠送积分活动 650568