电化学发光
聚吡咯
能量转移
猝灭(荧光)
材料科学
纳米颗粒
胶体金
纳米技术
光电子学
化学
电极
荧光
物理化学
复合材料
聚合物
光学
物理
聚合
分子物理学
作者
Tengfei Shi,Lihua Hu,Jiye Chen,Qianqian Cui,Hao Yu,Yuyang Li,Dan Wu,Hongmin Ma,Wei Qin,Huangxian Ju
标识
DOI:10.1016/j.snb.2022.132591
摘要
This work presents a dual-quenching electrochemiluminescence resonance energy transfer (ECL-RET) immunosensor on account of the double quenching effects of polydopamine coated ZnO nanoflowers ([email protected]) loaded with small-sized copper oxide nanoparticles (sCuO), named [email protected], towards gold [email protected] core–shell nanoparticles ([email protected]) enhanced g-C3N4 (g-C3N4[email protected]) for sensitive analysis of procalcitonin (PCT). To be specific, [email protected] with core-shell structure were loaded onto g-C3N4 to enhance the emission performance of g-C3N4. In addition, the ultraviolet absorption spectra of [email protected] and sCuO showed considerable overlap with the ECL emission spectra of g-C3N4 appropriately. So sCuO and [email protected] were combined and designed as an efficient dual-quencher of ECL luminescence of g-C3N4 by RET interaction. The biosensor showed superior linear detection range from 0.00005 to 50 ng mL−1, with a sensitive detection limit of 17.2 fg mL−1 (S/N = 3). It is worthy to note that a new type ECL-RET couple made up of g-C3N4[email protected] (donor) and [email protected] (acceptor) was developed to construct a sandwich ECL biosensor for PCT detection. The studied immunosensor had satisfactory sensitivity, specificity and reproducibility, indicating the proposed sensing method could provide a good technical means and theoretical basis for the diagnosis of serious diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI