Intratumoral and peritumoral radiomics nomograms for the preoperative prediction of lymphovascular invasion and overall survival in non-small cell lung cancer

列线图 医学 淋巴血管侵犯 无线电技术 比例危险模型 队列 肺癌 肿瘤科 放射科 神经组阅片室 内科学 癌症 转移 神经学 精神科
作者
Qiaoling Chen,JingJing Shao,Ting Xue,Hui Peng,Manman Li,Shaofeng Duan,Feng Feng
出处
期刊:European Radiology [Springer Nature]
卷期号:33 (2): 947-958 被引量:81
标识
DOI:10.1007/s00330-022-09109-3
摘要

ObjectivesTo evaluate the predictive value of intratumoral and peritumoral radiomics and radiomics nomogram for preoperative lymphovascular invasion (LVI) status and overall survival (OS) in patients with non-small cell lung cancer (NSCLC).MethodsIn total, 240 NSCLC patients from our institution were randomly divided into the training cohort (n = 145) and internal validation cohort (n = 95) with a ratio of 6:4, and 65 patients from the Cancer Imaging Archive were enrolled as the external validation cohort. We extracted 1217 CT-based radiomics features from the gross tumor volume (GTV) and gross tumor volume incorporating peritumoral 3, 6, and 9 mm regions (GPTV3, GPTV6, GPTV9). A radiomics nomogram based on clinical independent predictors and radiomics score (Radscore) of the best radiomics model was constructed. The correlation between factors and OS was evaluated with the Kaplan-Meier survival analysis and Cox proportional hazards regression analysis.ResultsCompared with GTV, GPTV3, and GPTV6 radiomics models, GPTV9 radiomics model exhibited better prediction performance with the AUCs of 0.82, 0.75, and 0.67 in the training, internal validation, and external validation cohorts, respectively. In the clinical model, smoking and clinical stage were independent predictors. The nomogram incorporating independent predictors and GPTV9-Radscore was clinically useful, with the AUCs of 0.89, 0.83, and 0.66 in three cohorts. Pathological LVI, GPTV9-Radscore-predicted, and Nomoscore-predicted LVI were associated with poor OS (p < 0.05).ConclusionsCT-based radiomics nomogram can predict LVI and OS in patients with NSCLC and may help in making personalized treatment strategies before surgery.Key Points • Compared with GTV, GPTV 3 , and GPTV 6 radiomics models, GPTV 9 radiomics model showed better prediction performance for LVI status in NSCLC. • The radiomics nomogram based on GPTV 9 radiomics features and clinical independent predictors could effectively predict LVI status and OS in NSCLC and outperformed the clinical model. • The radiomics nomogram had a wider scope of clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
胖蛋蛋蛋发布了新的文献求助10
5秒前
7秒前
8秒前
tclouds完成签到 ,获得积分10
8秒前
HAHA发布了新的文献求助10
9秒前
11发布了新的文献求助10
12秒前
0923发布了新的文献求助10
14秒前
18秒前
儒雅的不愁完成签到 ,获得积分10
19秒前
19秒前
科研通AI2S应助yuzaidididi采纳,获得10
20秒前
21秒前
一颗糖完成签到 ,获得积分10
22秒前
zoes发布了新的文献求助10
23秒前
幸运的果子狸完成签到,获得积分10
23秒前
zm完成签到,获得积分10
25秒前
小刘小刘发布了新的文献求助10
26秒前
26秒前
所所应助LLL采纳,获得10
27秒前
无极微光应助zoes采纳,获得20
28秒前
乐乐应助wuyanan513采纳,获得10
29秒前
sskr完成签到,获得积分10
29秒前
科研通AI6.1应助芝麻开花采纳,获得10
30秒前
GXY完成签到 ,获得积分10
31秒前
Akim应助小刘小刘采纳,获得10
31秒前
32秒前
18318933768完成签到,获得积分10
32秒前
0923完成签到,获得积分10
33秒前
南雪既白完成签到,获得积分10
33秒前
小慧儿完成签到 ,获得积分10
33秒前
CipherSage应助科研通管家采纳,获得10
35秒前
35秒前
田様应助刘玄德采纳,获得10
37秒前
老福贵儿应助牧青采纳,获得10
37秒前
PennySun完成签到,获得积分10
38秒前
高天雨完成签到 ,获得积分10
39秒前
LLL发布了新的文献求助10
41秒前
烟花应助太叔文博采纳,获得10
42秒前
烟花应助齐欣采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868166
求助须知:如何正确求助?哪些是违规求助? 6438782
关于积分的说明 15657843
捐赠科研通 4983526
什么是DOI,文献DOI怎么找? 2687517
邀请新用户注册赠送积分活动 1630201
关于科研通互助平台的介绍 1588271