Language Models are Few-Shot Learners

计算机科学 任务(项目管理) 语言模型 自然语言处理 判决 人工智能 词(群论) 简单(哲学) 语言学 哲学 管理 认识论 经济
作者
T. B. Brown,Benjamin F. Mann,Nick Ryder,Melanie Subbiah,Jared Kaplan,Prafulla Dhariwal,Arvind Neelakantan,Pranav Shyam,Girish Sastry,Amanda Askell,Sandhini Agarwal,Ariel Herbert-Voss,Gretchen Krueger,Tom Henighan,Rewon Child,Aditya Ramesh,Daniel M. Ziegler,Jeffrey C.S. Wu,Clemens Winter,Christopher Hesse,Mark Chen,Eric J. Sigler,Mateusz Litwin,Scott Gray,Benjamin Chess,Jack A. Clark,Christopher Berner,Sam McCandlish,Alec Radford,Ilya Sutskever,Dario Amodei
出处
期刊:Cornell University - arXiv 被引量:11866
标识
DOI:10.48550/arxiv.2005.14165
摘要

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzt完成签到,获得积分10
刚刚
漂亮翠曼完成签到,获得积分20
1秒前
汉堡包应助寂寞的小夏采纳,获得10
1秒前
Mr.Left发布了新的文献求助10
2秒前
23发布了新的文献求助20
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
6秒前
锐哥发布了新的文献求助10
7秒前
7秒前
aa发布了新的文献求助10
7秒前
小谷完成签到,获得积分10
8秒前
高超完成签到,获得积分20
10秒前
11秒前
12秒前
李桥溪完成签到,获得积分10
13秒前
13秒前
zzt发布了新的文献求助10
14秒前
16秒前
大模型应助大白包子李采纳,获得10
16秒前
mrcle发布了新的文献求助10
17秒前
墨点完成签到 ,获得积分10
18秒前
xiaozhao发布了新的文献求助10
18秒前
18秒前
科研通AI2S应助高桂花采纳,获得10
20秒前
arya完成签到,获得积分10
22秒前
丘比特应助ZH采纳,获得10
23秒前
打打应助23采纳,获得10
24秒前
吉他平方发布了新的文献求助10
24秒前
25秒前
25秒前
25秒前
友好芾发布了新的文献求助10
25秒前
26秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330178
求助须知:如何正确求助?哪些是违规求助? 2959781
关于积分的说明 8596907
捐赠科研通 2638194
什么是DOI,文献DOI怎么找? 1444196
科研通“疑难数据库(出版商)”最低求助积分说明 669063
邀请新用户注册赠送积分活动 656596