Attention-LSTM architecture combined with Bayesian hyperparameter optimization for indoor temperature prediction

超参数 计算机科学 贝叶斯优化 建筑 贝叶斯概率 人工智能 机器学习 环境科学 地理 考古
作者
Ben Jiang,Hongwei Gong,Haosen Qin,Mengjie Zhu
出处
期刊:Building and Environment [Elsevier BV]
卷期号:224: 109536-109536 被引量:44
标识
DOI:10.1016/j.buildenv.2022.109536
摘要

Accurate prediction of indoor temperature can provide more reference data for indoor thermal comfort assessment and the operational effectiveness of heating, ventilation and air conditioning equipment, making it possible to reduce unnecessary energy consumption while ensuring occupant comfort. This paper introduces a deep learning method to predict indoor air temperature. The aim is to explore the potential of a model combining LSTM with encoder-decoder and attention mechanisms in short-term forecasting and compare it with LSTM models and GRU models. The hyperparameters are optimized by TPE Bayesian optimization to facilitate the determination of various parameters in the deep model. The results show that compared with other commonly used time series prediction algorithms, the model has an advantage in the case of short-term time ahead prediction. The model can accurately predict the change trend of room temperature and maintain stability for a long time. The R-square of the prediction results is more than 0.9. This work has reference significance for the feasibility study of establishing an indoor temperature prediction model. • The Attention-LSTM architecture used to predict the room temperature. • Compare the used architecture with the LSTM architecture and GRU architecture. • TPE Bayesian hyperparametric optimization is used to determine the hyperparameters. • The architecture used is predicted to be more accurate and stable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
1秒前
ding应助科研通管家采纳,获得10
1秒前
无花果应助寂寞的艳血采纳,获得10
1秒前
YYH发布了新的文献求助30
1秒前
1秒前
jh完成签到,获得积分10
1秒前
小杭76应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
2秒前
Cuisine完成签到 ,获得积分10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
丁一发布了新的文献求助10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
李健的小迷弟应助谢志超采纳,获得10
3秒前
KSung发布了新的文献求助10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
3秒前
宁静致远应助科研通管家采纳,获得20
4秒前
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
5秒前
李霞发布了新的文献求助10
5秒前
5秒前
XYJ1完成签到,获得积分10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
赘婿应助李善聪采纳,获得10
6秒前
爆米花应助赵小哼采纳,获得10
6秒前
皮皮完成签到 ,获得积分20
6秒前
6秒前
Orange应助科研通管家采纳,获得80
6秒前
7秒前
Orange应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261224
求助须知:如何正确求助?哪些是违规求助? 4422343
关于积分的说明 13765975
捐赠科研通 4296787
什么是DOI,文献DOI怎么找? 2357517
邀请新用户注册赠送积分活动 1353903
关于科研通互助平台的介绍 1315103