Attention-LSTM architecture combined with Bayesian hyperparameter optimization for indoor temperature prediction

超参数 计算机科学 贝叶斯优化 建筑 贝叶斯概率 人工智能 机器学习 环境科学 地理 考古
作者
Ben Jiang,Hongwei Gong,Haosen Qin,Mengjie Zhu
出处
期刊:Building and Environment [Elsevier BV]
卷期号:224: 109536-109536 被引量:44
标识
DOI:10.1016/j.buildenv.2022.109536
摘要

Accurate prediction of indoor temperature can provide more reference data for indoor thermal comfort assessment and the operational effectiveness of heating, ventilation and air conditioning equipment, making it possible to reduce unnecessary energy consumption while ensuring occupant comfort. This paper introduces a deep learning method to predict indoor air temperature. The aim is to explore the potential of a model combining LSTM with encoder-decoder and attention mechanisms in short-term forecasting and compare it with LSTM models and GRU models. The hyperparameters are optimized by TPE Bayesian optimization to facilitate the determination of various parameters in the deep model. The results show that compared with other commonly used time series prediction algorithms, the model has an advantage in the case of short-term time ahead prediction. The model can accurately predict the change trend of room temperature and maintain stability for a long time. The R-square of the prediction results is more than 0.9. This work has reference significance for the feasibility study of establishing an indoor temperature prediction model. • The Attention-LSTM architecture used to predict the room temperature. • Compare the used architecture with the LSTM architecture and GRU architecture. • TPE Bayesian hyperparametric optimization is used to determine the hyperparameters. • The architecture used is predicted to be more accurate and stable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助Silhouette采纳,获得10
刚刚
乐乐应助Yuan采纳,获得10
1秒前
1秒前
小杜发布了新的文献求助10
1秒前
璀璨完成签到,获得积分20
1秒前
1秒前
诚心的小土豆应助wt采纳,获得10
1秒前
2秒前
2秒前
HJJHJH发布了新的文献求助10
2秒前
2秒前
司徒元瑶完成签到 ,获得积分10
3秒前
SciGPT应助赵芳采纳,获得10
3秒前
3秒前
4秒前
12345完成签到,获得积分10
4秒前
4秒前
Sheryl发布了新的文献求助10
5秒前
1111应助mdbbs2021采纳,获得10
5秒前
5秒前
haha完成签到,获得积分10
5秒前
5秒前
6秒前
小马甲应助赫赫采纳,获得10
6秒前
6秒前
桐桐应助semigreen采纳,获得10
6秒前
6秒前
郭娅楠发布了新的文献求助10
7秒前
阿龙完成签到,获得积分10
7秒前
陈文文发布了新的文献求助10
7秒前
情怀应助顺利的语山采纳,获得10
8秒前
8秒前
张张发布了新的文献求助10
8秒前
七七八八发布了新的文献求助10
8秒前
姚夏发布了新的文献求助10
8秒前
兴奋的以蓝完成签到,获得积分10
9秒前
Silhouette完成签到,获得积分10
9秒前
烟花应助lizy采纳,获得10
9秒前
9秒前
李健的粉丝团团长应助haha采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577106
求助须知:如何正确求助?哪些是违规求助? 3996300
关于积分的说明 12372082
捐赠科研通 3670338
什么是DOI,文献DOI怎么找? 2022766
邀请新用户注册赠送积分活动 1056873
科研通“疑难数据库(出版商)”最低求助积分说明 944022