数学
算术
猜想
除数(代数几何)
算术级数
多样性(控制论)
主要因素
素数(序理论)
财产(哲学)
数论
离散数学
组合数学
统计
认识论
哲学
作者
Prajeet Bajpai,Michael A. Bennett,Tsz Ho Chan
标识
DOI:10.1142/s1793042124500027
摘要
We answer a number of questions of Erdős on the existence of arithmetic progressions in [Formula: see text]-full numbers (i.e. integers with the property that every prime divisor necessarily occurs to at least the [Formula: see text]th power). Further, we deduce a variety of arithmetic constraints upon such progressions, under the assumption of the [Formula: see text]-conjecture of Masser and Oesterlé.
科研通智能强力驱动
Strongly Powered by AbleSci AI