Activation network improves spatiotemporal modelling of human brain communication processes

动态功能连接 计算机科学 相关性 动态网络分析 功能连接 依赖关系(UML) 过程(计算) 大脑活动与冥想 神经科学 人工智能 心理学 数学 脑电图 计算机网络 几何学 操作系统
作者
Xucheng Liu,Ze Wang,Shun Liu,Lianggeng Gong,Pedro A. Valdés‐Sosa,Benjamin Becker,Tzyy‐Ping Jung,Xi‐Jian Dai,Feng Wan
出处
期刊:NeuroImage [Elsevier]
卷期号:285: 120472-120472 被引量:2
标识
DOI:10.1016/j.neuroimage.2023.120472
摘要

Dynamic functional networks (DFN) have considerably advanced modelling of the brain communication processes. The prevailing implementation capitalizes on the system and network-level correlations between time-series. However, this approach does not account for the continuous impact of non-dynamic dependencies within the statistical correlation, resulting in relatively stable connectivity patterns of DFN over time with limited sensitivity for communication dynamic between brain regions. Here, we propose an activation network framework based on the activity of functional connectivity (AFC) to extract new types of connectivity patterns during brain communication process. The AFC captures potential time-specific fluctuations associated with the brain communication processes by eliminating the non-dynamic dependency of the statistical correlation. In a simulation study, the positive correlation (r=0.966,p<0.001) between the extracted dynamic dependencies and the simulated "ground truth" validates the method's dynamic detection capability. In an application to autism spectrum disorders (ASD) and COVID-19 datasets, the proposed activation network extracts richer topological reorganization information, which are largely invisible to the DFN. Detailed, the activation network exhibits significant inter-regional connections between function-specific subnetworks and reconfigures more efficiently in the temporal dimension. Furthermore, the DFN fails to distinguish between patients and healthy controls. However, the proposed method reveals a significant decrease (p<0.05) in brain information processing abilities in patients. Finally, combining two types of networks successfully classify ASD (83.636% ± 11.969%,mean±std) and COVID-19 (67.333% ± 5.398%). These findings suggest the proposed method could be a potential analytic framework for elucidating the neural mechanism of brain dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
czz完成签到,获得积分10
刚刚
131343发布了新的文献求助10
刚刚
1秒前
调研昵称发布了新的文献求助10
1秒前
3秒前
OnMyWorldside完成签到,获得积分10
4秒前
sandra完成签到,获得积分20
4秒前
guoguo发布了新的文献求助10
4秒前
peach完成签到,获得积分10
4秒前
Yolo发布了新的文献求助10
4秒前
吃不饱星球球长应助小熊采纳,获得30
4秒前
5秒前
汉堡包应助caleb采纳,获得10
5秒前
xiahongmei完成签到 ,获得积分10
6秒前
Vicky完成签到,获得积分10
6秒前
小璐sunny发布了新的文献求助10
6秒前
6秒前
Ya发布了新的文献求助10
6秒前
共享精神应助岁岁采纳,获得10
7秒前
7秒前
llly完成签到,获得积分10
7秒前
9秒前
9秒前
共享精神应助fly采纳,获得10
9秒前
充电宝应助乙酰胆碱采纳,获得10
9秒前
ly完成签到,获得积分10
10秒前
小酒窝发布了新的文献求助10
10秒前
hdx完成签到 ,获得积分10
10秒前
10秒前
哈哈人发布了新的文献求助20
11秒前
11秒前
阳光水壶发布了新的文献求助10
11秒前
闫_发布了新的文献求助10
11秒前
叙温雨完成签到,获得积分10
12秒前
haha发布了新的文献求助10
12秒前
兴奋大船完成签到,获得积分10
13秒前
来来完成签到,获得积分10
13秒前
yufanhui应助YCG采纳,获得20
13秒前
慕青应助许子采纳,获得10
13秒前
高分求助中
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122356
求助须知:如何正确求助?哪些是违规求助? 2772858
关于积分的说明 7714795
捐赠科研通 2428308
什么是DOI,文献DOI怎么找? 1289700
科研通“疑难数据库(出版商)”最低求助积分说明 621484
版权声明 600183