Activation network improves spatiotemporal modelling of human brain communication processes

动态功能连接 计算机科学 相关性 动态网络分析 功能连接 依赖关系(UML) 过程(计算) 大脑活动与冥想 神经科学 人工智能 心理学 数学 脑电图 计算机网络 几何学 操作系统
作者
Xucheng Liu,Ze Wang,Shun Liu,Lianggeng Gong,Pedro A. Valdés‐Sosa,Benjamin Becker,Tzyy‐Ping Jung,Xi-jian Dai,Feng Wan
出处
期刊:NeuroImage [Elsevier BV]
卷期号:285: 120472-120472 被引量:2
标识
DOI:10.1016/j.neuroimage.2023.120472
摘要

Dynamic functional networks (DFN) have considerably advanced modelling of the brain communication processes. The prevailing implementation capitalizes on the system and network-level correlations between time series. However, this approach does not account for the continuous impact of non-dynamic dependencies within the statistical correlation, resulting in relatively stable connectivity patterns of DFN over time with limited sensitivity for communication dynamic between brain regions. Here, we propose an activation network framework based on the activity of functional connectivity (AFC) to extract new types of connectivity patterns during brain communication process. The AFC captures potential time-specific fluctuations associated with the brain communication processes by eliminating the non-dynamic dependency of the statistical correlation. In a simulation study, the positive correlation (r=0.966,p<0.001) between the extracted dynamic dependencies and the simulated "ground truth" validates the method's dynamic detection capability. Applying to autism spectrum disorders (ASD) and COVID-19 datasets, the proposed activation network extracts richer topological reorganization information, which is largely invisible to the DFN. Detailed, the activation network exhibits significant inter-regional connections between function-specific subnetworks and reconfigures more efficiently in the temporal dimension. Furthermore, the DFN fails to distinguish between patients and healthy controls. However, the proposed method reveals a significant decrease (p<0.05) in brain information processing abilities in patients. Finally, combining two types of networks successfully classifies ASD (83.636 % ± 11.969 %,mean±std) and COVID-19 (67.333 % ± 5.398 %). These findings suggest the proposed method could be a potential analytic framework for elucidating the neural mechanism of brain dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ttrr完成签到,获得积分10
1秒前
zheng发布了新的文献求助10
1秒前
Jadedew完成签到,获得积分10
1秒前
JamesPei应助我迷了鹿采纳,获得10
1秒前
lx发布了新的文献求助30
2秒前
2秒前
ziyuixnshi发布了新的文献求助10
3秒前
3秒前
Ava应助demian采纳,获得10
3秒前
Tireastani应助刘四毛采纳,获得10
4秒前
ally完成签到,获得积分10
5秒前
搬砖的冰美式完成签到,获得积分10
5秒前
丞123完成签到,获得积分10
5秒前
大型海狮完成签到,获得积分10
6秒前
Hyh_发布了新的文献求助10
6秒前
天天快乐应助lzh采纳,获得10
7秒前
zpz发布了新的文献求助10
7秒前
李爱国应助SAODEN采纳,获得10
7秒前
苹果丝完成签到 ,获得积分10
7秒前
9秒前
9秒前
9秒前
www完成签到,获得积分10
10秒前
zxm完成签到,获得积分10
10秒前
北念霜oD4完成签到,获得积分10
10秒前
11秒前
111完成签到 ,获得积分10
11秒前
123完成签到,获得积分10
11秒前
淡水痕完成签到,获得积分10
11秒前
11秒前
乔垣结衣完成签到,获得积分10
12秒前
呆呆完成签到 ,获得积分10
12秒前
ginkgoleaf发布了新的文献求助10
12秒前
飘逸鸵鸟发布了新的文献求助10
13秒前
月下萤火完成签到,获得积分20
13秒前
13秒前
demian完成签到,获得积分20
14秒前
zjc1111完成签到,获得积分10
14秒前
莫封叶完成签到,获得积分10
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582