Activation network improves spatiotemporal modelling of human brain communication processes

动态功能连接 计算机科学 相关性 动态网络分析 功能连接 依赖关系(UML) 过程(计算) 大脑活动与冥想 神经科学 人工智能 心理学 数学 脑电图 计算机网络 几何学 操作系统
作者
Xucheng Liu,Ze Wang,Shun Liu,Lianggeng Gong,Pedro A. Valdés‐Sosa,Benjamin Becker,Tzyy‐Ping Jung,Xi-jian Dai,Feng Wan
出处
期刊:NeuroImage [Elsevier]
卷期号:285: 120472-120472 被引量:2
标识
DOI:10.1016/j.neuroimage.2023.120472
摘要

Dynamic functional networks (DFN) have considerably advanced modelling of the brain communication processes. The prevailing implementation capitalizes on the system and network-level correlations between time series. However, this approach does not account for the continuous impact of non-dynamic dependencies within the statistical correlation, resulting in relatively stable connectivity patterns of DFN over time with limited sensitivity for communication dynamic between brain regions. Here, we propose an activation network framework based on the activity of functional connectivity (AFC) to extract new types of connectivity patterns during brain communication process. The AFC captures potential time-specific fluctuations associated with the brain communication processes by eliminating the non-dynamic dependency of the statistical correlation. In a simulation study, the positive correlation (r=0.966,p<0.001) between the extracted dynamic dependencies and the simulated "ground truth" validates the method's dynamic detection capability. Applying to autism spectrum disorders (ASD) and COVID-19 datasets, the proposed activation network extracts richer topological reorganization information, which is largely invisible to the DFN. Detailed, the activation network exhibits significant inter-regional connections between function-specific subnetworks and reconfigures more efficiently in the temporal dimension. Furthermore, the DFN fails to distinguish between patients and healthy controls. However, the proposed method reveals a significant decrease (p<0.05) in brain information processing abilities in patients. Finally, combining two types of networks successfully classifies ASD (83.636 % ± 11.969 %,mean±std) and COVID-19 (67.333 % ± 5.398 %). These findings suggest the proposed method could be a potential analytic framework for elucidating the neural mechanism of brain dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小赟发布了新的文献求助20
1秒前
Ava应助爱学习采纳,获得10
1秒前
1秒前
wary发布了新的文献求助10
1秒前
橘子完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
了了发布了新的文献求助10
4秒前
4秒前
ZQY完成签到 ,获得积分10
4秒前
斯文败类应助正直亦旋采纳,获得10
6秒前
科研通AI5应助jijahui采纳,获得80
7秒前
Jenny应助背后的诺言采纳,获得10
7秒前
木木完成签到,获得积分10
7秒前
赤邪发布了新的文献求助10
7秒前
7秒前
keen完成签到 ,获得积分10
7秒前
et完成签到,获得积分10
8秒前
桂魄完成签到,获得积分10
8秒前
8秒前
9秒前
wang发布了新的文献求助200
10秒前
10秒前
10秒前
英姑应助snowdrift采纳,获得10
10秒前
10秒前
10秒前
jy完成签到 ,获得积分10
10秒前
NexusExplorer应助立马毕业采纳,获得10
11秒前
在水一方应助123采纳,获得10
12秒前
科目三应助白华苍松采纳,获得10
13秒前
通~发布了新的文献求助10
13秒前
CipherSage应助千幻采纳,获得10
13秒前
13秒前
dddddd完成签到,获得积分10
13秒前
桂魄发布了新的文献求助10
13秒前
年轻的咖啡豆完成签到,获得积分20
14秒前
14秒前
绿洲发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762