Regression-Based Hyperparameter Learning for Support Vector Machines

超参数 人工智能 支持向量机 机器学习 超参数优化 计算机科学 回归 边距(机器学习) 数学 统计
作者
Shili Peng,Wenwu Wang,Yinli Chen,Xueling Zhong,Qinghua Hu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:9
标识
DOI:10.1109/tnnls.2023.3321685
摘要

Unification of classification and regression is a major challenge in machine learning and has attracted increasing attentions from researchers.In this paper, we present a new idea for this challenge, where we convert the classification problem to a regression problem, and then use the methods in regression to solve the problem in classification.To this end, we leverage the widely used maximum margin classification algorithm, and its typical representative, Support Vector Machine (SVM).More specifically, we convert SVM into a piecewise linear regression task, and propose a regression-based SVM (RBSVM) hyperparameter learning algorithm, where regression methods are used to solve several key problems in classification, such as learning of hyperparameters, calculation of prediction probabilities, and measurement of model uncertainty.To analyze the uncertainty of the model, we propose a new concept of model entropy, where the leave-one-out prediction probability of each sample is converted into entropy, and then used to quantify the uncertainty of the model.The model entropy is different from the classification margin, in the sense that it considers the distribution of all samples, not just the support vectors.Therefore, it can assess the uncertainty of the model more accurately than the classification margin.In the case of the same classification margin, the farther the sample distribution is from the classification hyperplane, the lower the model entropy.Experiments show that our algorithm (RBSVM) provides higher prediction accuracy and lower model uncertainty, as compared with state of the art algorithms, such as Bayesian hyperparameter search and gradient-based hyperparameter learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
keyan完成签到,获得积分20
刚刚
3秒前
痴情的博超应助怡然的月采纳,获得30
3秒前
王木木发布了新的文献求助10
4秒前
星辰大海应助迷人的沛山采纳,获得10
4秒前
4秒前
木瓜发布了新的文献求助10
5秒前
nbing发布了新的文献求助10
5秒前
6秒前
惊回完成签到,获得积分10
6秒前
6秒前
完美世界应助yao采纳,获得10
6秒前
6秒前
小李完成签到 ,获得积分10
7秒前
wanci应助236采纳,获得10
7秒前
miaomiao发布了新的文献求助10
7秒前
领导范儿应助摸摸采纳,获得10
8秒前
mengmeng0202发布了新的文献求助10
9秒前
9秒前
9秒前
Hello应助小文子采纳,获得10
10秒前
笑点低戾发布了新的文献求助10
10秒前
11秒前
YJ888发布了新的文献求助10
11秒前
尊敬的毛豆完成签到,获得积分10
11秒前
12秒前
王大可完成签到,获得积分10
12秒前
14秒前
忧伤的冥完成签到,获得积分10
14秒前
木耳发布了新的文献求助10
14秒前
没有名字应助yoru16采纳,获得20
15秒前
王木木完成签到,获得积分20
15秒前
15秒前
搜集达人应助陆中硕采纳,获得10
16秒前
所所应助笑点低戾采纳,获得10
16秒前
沈昊泽发布了新的文献求助10
16秒前
yanshapo发布了新的文献求助10
17秒前
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3752875
求助须知:如何正确求助?哪些是违规求助? 3296450
关于积分的说明 10093989
捐赠科研通 3011290
什么是DOI,文献DOI怎么找? 1653702
邀请新用户注册赠送积分活动 788396
科研通“疑难数据库(出版商)”最低求助积分说明 752809