Optimization analysis of droplet dust removal mass on tilted superhydrophobic surface based on regulating PV tilt angle and drop height

下降(电信) 倾斜(摄像机) 接触角 材料科学 跌落冲击 光学 倾斜角 机械 复合材料 物理 几何学 润湿 电信 数学 计算机科学
作者
Dong Zhang,Chengtao Yan,Jianhua Bai,Kai Yu,Jingrui Zhang,Jinchao Ji,Zhoujian An
出处
期刊:Solar Energy [Elsevier]
卷期号:265: 112077-112077 被引量:1
标识
DOI:10.1016/j.solener.2023.112077
摘要

This study proposes a method for adjusting the mass of droplet dust removal based on droplet height and photovoltaic tilt angle, utilizing a model of droplet motion on inclined superhydrophobic surfaces. A droplet's motion on dusty and inclined hydrophobic surfaces is analyzed using a high-speed digital imaging system. The impact of drop height and photovoltaic tilt angle on the mass of dust removed by the droplet is experimentally investigated. The findings reveal that the mass of droplet dust removal increases quickly with the rise of drop height and tilt angle. The modification of the tilt angle yields a more pronounced enhancement in dust removal efficiency. At an angle of 40°, the drop height rises from 0.5 cm to 10 cm, leading to an extra 6.6 mg of dust removal per drop. At a height of 0 cm, the mass increased by 10.62 mg after raising the angle from 10° to 40°. Droplet impact on the surface is prone to shattering. The emitted minute droplets will adhere to the surface and form a cohesive ash band, with a visible light transmission rate of merely 67 %. When a droplet rolls on a tilted superhydrophobic surface, there's a dust removal threshold. Once exceeded, the rolling shape tends to become ellipsoidal. The experimental and model predictions of droplet dust removal mass are of the same order of magnitude and differ by a few micrograms. Therefore, the theoretical model can be used to improve the efficiency of droplet dust removal by adjusting the drop height and photovoltaic angle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李健应助陶醉觅夏采纳,获得10
2秒前
2秒前
独特凡松完成签到,获得积分10
2秒前
木笔朱瑾完成签到 ,获得积分10
3秒前
Rinohalt完成签到,获得积分10
3秒前
4秒前
孙梁子完成签到,获得积分10
4秒前
核桃花生奶兔完成签到 ,获得积分10
5秒前
请叫我风吹麦浪应助HJJHJH采纳,获得10
6秒前
7秒前
孙奕发布了新的文献求助10
7秒前
xiaotian_fan完成签到,获得积分10
7秒前
9秒前
9秒前
科研通AI2S应助laochen采纳,获得10
9秒前
盘尼西林发布了新的文献求助10
9秒前
迟大猫应助专心搞学术采纳,获得10
10秒前
12秒前
孙奕完成签到,获得积分10
13秒前
13秒前
俟天晴完成签到,获得积分10
13秒前
淡定问芙发布了新的文献求助30
14秒前
16秒前
Lewis完成签到,获得积分10
17秒前
orixero应助TranYan采纳,获得10
17秒前
猪猪hero发布了新的文献求助10
19秒前
20秒前
今后应助333采纳,获得10
21秒前
pu发布了新的文献求助10
22秒前
Akim应助梓榆采纳,获得10
23秒前
劼大大完成签到,获得积分10
23秒前
最优解完成签到 ,获得积分20
24秒前
24秒前
通~发布了新的文献求助10
24秒前
一段乐多完成签到,获得积分10
25秒前
25秒前
25秒前
给我找完成签到,获得积分10
26秒前
桐桐应助Yuki0616采纳,获得10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794