A Recyclable Co-Fe Bimetallic Immobilized Cellulose Hydrogel Bead (CoFeO@CHB) to Boost Singlet Oxygen Evolution for Tetracycline Degradation

双金属片 化学 细菌纤维素 纤维素 单线态氧 降级(电信) 化学工程 催化作用 氧气 核化学 有机化学 计算机科学 电信 工程类
作者
Xinying Chen,He Zhang,Shizhe Xu,Xiaoge Du,Kaida Zhang,Chun-Po Hu,Sihui Zhan,Xueyue Mi,Wen‐Da Oh,Xiao Hu,Ziyong Pan,Yueping Bao
出处
期刊:Catalysts [MDPI AG]
卷期号:13 (8): 1150-1150
标识
DOI:10.3390/catal13081150
摘要

In the current work, a novel Co-Fe bimetallic immobilized cellulose hydrogel bead (CoFeO@CHB) was prepared via in situ chemical precipitation followed by heat treatment and applied for tetracycline (TC) degradation in the presence of peroxymonosulfate (PMS). The characterization results indicated that the Co-Fe particles were evenly distributed within the porous cellulose hydrogel beads, without affecting their morphologies or crystal structures. During the TC degradation, the CoFeO@CHB/PMS system showed a high resistance and stability to different water bodies, and the common anions and natural organic matters showed a limited effect on TC degradation. The chemical quenching experiments (using chemicals to react with specific reactive species) as well as electron paramagnetic resonance (EPR) results showed that CoFeO@CHB can effectively active PMS to generate multiple reactive oxygen species (ROS, such as SO4•−, •OH and 1O2), in which the 1O2-dominated non-radical pathway played a vital role in TC degradation. Both Co and Fe were proposed as the active sites for PMS activation, and the CoFeO@CHB/PMS system showed a high potential in practical application due to its high selectivity and robustness with much less toxic intermediate products. Furthermore, a long-term continuous home-made dead-end filtration device was constructed to evaluate the stability and application potential of the CoFeO@CHB/PMS system, in which a >70% removal was maintained in a continuous 800 min filtration. These results showed the promising potential for cellulose hydrogel beads utilized as a metal-based nanomaterial substrate for organic degradation via PMS activation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助yangzhuang采纳,获得10
刚刚
stephen_wang完成签到,获得积分10
刚刚
科研通AI5应助陈乐宁2024采纳,获得10
1秒前
哈哈哈发布了新的文献求助10
1秒前
靓丽棉花糖关注了科研通微信公众号
1秒前
Graceluxx发布了新的文献求助10
2秒前
zqq发布了新的文献求助10
2秒前
Rebirth发布了新的文献求助10
2秒前
布丁果冻发布了新的文献求助10
2秒前
慕青应助qazpsy采纳,获得10
3秒前
李加威完成签到 ,获得积分10
4秒前
4秒前
京阿尼发布了新的文献求助10
5秒前
6秒前
han应助五條小羊采纳,获得10
8秒前
8秒前
陈乐宁2024完成签到,获得积分10
9秒前
zqq完成签到,获得积分10
10秒前
10秒前
10秒前
健康的雅香完成签到,获得积分10
11秒前
陈乐宁2024发布了新的文献求助10
11秒前
大头老婆完成签到 ,获得积分10
12秒前
12秒前
哈哈哈完成签到,获得积分20
14秒前
luchang123qq发布了新的文献求助30
14秒前
HYLynn关注了科研通微信公众号
15秒前
16秒前
明杰完成签到,获得积分10
16秒前
科研通AI5应助善良的不二采纳,获得10
17秒前
华仔完成签到,获得积分10
17秒前
科研通AI5应助小阳采纳,获得10
18秒前
18秒前
科研通AI5应助kirito采纳,获得10
19秒前
福尔摩云发布了新的文献求助30
19秒前
外向白开水完成签到 ,获得积分10
19秒前
20秒前
20秒前
mwj完成签到,获得积分10
20秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514884
求助须知:如何正确求助?哪些是违规求助? 3097246
关于积分的说明 9234750
捐赠科研通 2792216
什么是DOI,文献DOI怎么找? 1532342
邀请新用户注册赠送积分活动 711969
科研通“疑难数据库(出版商)”最低求助积分说明 707062