Evaluation of objective tools and artificial intelligence in robotic surgery technical skills assessment: a systematic review

检查表 医学 定制 梅德林 医学物理学 系统回顾 委派 人工智能 医学教育 计算机科学 心理学 政治学 认知心理学 法学
作者
Matt Boal,Dimitrios Anastasiou,Freweini Tesfai,Walaa Ghamrawi,Evangelos B. Mazomenos,Nathan Curtis,Justin Collins,Ashwin Sridhar,John D. Kelly,Danail Stoyanov,Nader Francis
出处
期刊:British Journal of Surgery 被引量:4
标识
DOI:10.1093/bjs/znad331
摘要

Abstract Background There is a need to standardize training in robotic surgery, including objective assessment for accreditation. This systematic review aimed to identify objective tools for technical skills assessment, providing evaluation statuses to guide research and inform implementation into training curricula. Methods A systematic literature search was conducted in accordance with the PRISMA guidelines. Ovid Embase/Medline, PubMed and Web of Science were searched. Inclusion criterion: robotic surgery technical skills tools. Exclusion criteria: non-technical, laparoscopy or open skills only. Manual tools and automated performance metrics (APMs) were analysed using Messick's concept of validity and the Oxford Centre of Evidence-Based Medicine (OCEBM) Levels of Evidence and Recommendation (LoR). A bespoke tool analysed artificial intelligence (AI) studies. The Modified Downs–Black checklist was used to assess risk of bias. Results Two hundred and forty-seven studies were analysed, identifying: 8 global rating scales, 26 procedure-/task-specific tools, 3 main error-based methods, 10 simulators, 28 studies analysing APMs and 53 AI studies. Global Evaluative Assessment of Robotic Skills and the da Vinci Skills Simulator were the most evaluated tools at LoR 1 (OCEBM). Three procedure-specific tools, 3 error-based methods and 1 non-simulator APMs reached LoR 2. AI models estimated outcomes (skill or clinical), demonstrating superior accuracy rates in the laboratory with 60 per cent of methods reporting accuracies over 90 per cent, compared to real surgery ranging from 67 to 100 per cent. Conclusions Manual and automated assessment tools for robotic surgery are not well validated and require further evaluation before use in accreditation processes. PROSPERO: registration ID CRD42022304901
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd发布了新的文献求助10
刚刚
1秒前
1秒前
传奇3应助陶巴子采纳,获得30
1秒前
张有志完成签到,获得积分10
1秒前
2秒前
小二郎应助兰晋彤采纳,获得10
2秒前
CyrusSo524发布了新的文献求助20
4秒前
114514发布了新的文献求助10
4秒前
笑眯眯完成签到,获得积分10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
tianxiong发布了新的文献求助80
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
6秒前
哈哈哈哈完成签到,获得积分10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
乐观的雨发布了新的文献求助10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
6秒前
lyy227完成签到,获得积分10
6秒前
英俊的铭应助爱笑秀发采纳,获得10
6秒前
anna1992发布了新的文献求助10
7秒前
兰晋彤完成签到,获得积分10
7秒前
7秒前
清新完成签到,获得积分10
8秒前
alex完成签到,获得积分10
8秒前
9秒前
LZJ完成签到 ,获得积分10
9秒前
杳鸢应助AAApril采纳,获得10
9秒前
泯珉发布了新的文献求助10
11秒前
11秒前
南城发布了新的文献求助10
11秒前
三笠完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563884
求助须知:如何正确求助?哪些是违规求助? 3137084
关于积分的说明 9421008
捐赠科研通 2837557
什么是DOI,文献DOI怎么找? 1559894
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717195