DMVSVDD: Multi-View Data Novelty Detection with Deep Autoencoding Support Vector Data Description

超球体 新知识检测 计算机科学 人工智能 支持向量机 过度拟合 离群值 深度学习 模式识别(心理学) 新颖性 人工神经网络 过程(计算) 机器学习 数据挖掘 哲学 神学 操作系统
作者
Zeqiu Chen,Kaiyi Zhao,Shulin Sun,Jiayao Li,Shufan Wang,Ruizhi Sun
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:240: 122443-122443
标识
DOI:10.1016/j.eswa.2023.122443
摘要

Novelty detection is usually defined as the identification of new or abnormal objects (outliers) from the normal ones (inliers), which has wide potential applications in the real world. Recently, an effective algorithm called Deep Support Vector Data Description (Deep SVDD) has been proposed for novelty detection, which jointly trains a deep neural network while optimizing a data-enclosing hypersphere in output space. However, some constraints such as hypersphere collapse, limit the adaptability of the model and may affect the model performance. Moreover, most of the existing studies concerning Deep SVDD focus on the novelty detection for single-view data, which may fail to provide an accurate and reliable decision because the single-view data sometimes cannot fully reflect the actual condition of the problem. In this study, we developed an end-to-end deep learning method of novelty detection for multi-view data, i.e., the Deep Multi-View SVDD (DMVSVDD). To fully preserve the correlative and complementary information of multi-view data, we jointly trained multiple deep autoencoding neural networks for multiple views while adaptively optimizing the data-enclosing hypersphere of each view in latent space. A global objective function was proposed, which takes both of the sample reconstruction error minimization and the hypersphere volume minimization into consideration simultaneously to prevent hypersphere collapse in the model. In the global objective function, the hypersphere centers and view weights of different views were designed to adaptively select the better representative features after each epoch during the training process by embedding multi-view target samples into multiple data-enclosing hyperspheres with minimum volumes. The experimental results on the MNIST-USPS and NUS-WIDE-OBJECT datasets reveal that our proposed method learns the target class effectively and is superior to some state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yaon-Xu完成签到,获得积分10
刚刚
自觉的小海豚完成签到,获得积分10
刚刚
1秒前
Razor完成签到,获得积分10
1秒前
1秒前
伯尔尼圆白菜完成签到,获得积分10
1秒前
Sabrina完成签到,获得积分10
2秒前
Jasper应助脚啊啊啊采纳,获得10
2秒前
2秒前
2秒前
赘婿应助zzzz采纳,获得10
2秒前
luha完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
领导范儿应助zyy采纳,获得10
5秒前
阿十完成签到,获得积分10
5秒前
6秒前
水沝完成签到 ,获得积分10
6秒前
美好斓发布了新的文献求助30
7秒前
Yportne完成签到,获得积分10
7秒前
ColdSunWu完成签到,获得积分10
7秒前
Li完成签到,获得积分10
8秒前
8秒前
99giddens应助luluyang采纳,获得50
8秒前
8秒前
栗子鱼发布了新的文献求助10
9秒前
10秒前
Polaris发布了新的文献求助20
10秒前
ppppppppp完成签到,获得积分10
10秒前
大旭完成签到 ,获得积分10
11秒前
赵哥发布了新的文献求助10
11秒前
13秒前
乐观蚂蚁完成签到 ,获得积分10
13秒前
直率的钢铁侠完成签到,获得积分10
13秒前
whyyy完成签到 ,获得积分10
13秒前
大宇完成签到,获得积分10
14秒前
李爱国应助四月128采纳,获得10
14秒前
桐桐应助吃零食吃不下饭采纳,获得10
14秒前
Akim应助JWKim采纳,获得10
15秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147491
求助须知:如何正确求助?哪些是违规求助? 2798710
关于积分的说明 7830633
捐赠科研通 2455455
什么是DOI,文献DOI怎么找? 1306817
科研通“疑难数据库(出版商)”最低求助积分说明 627917
版权声明 601587