DMVSVDD: Multi-View Data Novelty Detection with Deep Autoencoding Support Vector Data Description

超球体 新知识检测 计算机科学 人工智能 支持向量机 过度拟合 离群值 深度学习 模式识别(心理学) 新颖性 人工神经网络 过程(计算) 机器学习 数据挖掘 哲学 神学 操作系统
作者
Zeqiu Chen,Kaiyi Zhao,Shulin Sun,Jiayao Li,Shufan Wang,Ruizhi Sun
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:240: 122443-122443 被引量:1
标识
DOI:10.1016/j.eswa.2023.122443
摘要

Novelty detection is usually defined as the identification of new or abnormal objects (outliers) from the normal ones (inliers), which has wide potential applications in the real world. Recently, an effective algorithm called Deep Support Vector Data Description (Deep SVDD) has been proposed for novelty detection, which jointly trains a deep neural network while optimizing a data-enclosing hypersphere in output space. However, some constraints such as hypersphere collapse, limit the adaptability of the model and may affect the model performance. Moreover, most of the existing studies concerning Deep SVDD focus on the novelty detection for single-view data, which may fail to provide an accurate and reliable decision because the single-view data sometimes cannot fully reflect the actual condition of the problem. In this study, we developed an end-to-end deep learning method of novelty detection for multi-view data, i.e., the Deep Multi-View SVDD (DMVSVDD). To fully preserve the correlative and complementary information of multi-view data, we jointly trained multiple deep autoencoding neural networks for multiple views while adaptively optimizing the data-enclosing hypersphere of each view in latent space. A global objective function was proposed, which takes both of the sample reconstruction error minimization and the hypersphere volume minimization into consideration simultaneously to prevent hypersphere collapse in the model. In the global objective function, the hypersphere centers and view weights of different views were designed to adaptively select the better representative features after each epoch during the training process by embedding multi-view target samples into multiple data-enclosing hyperspheres with minimum volumes. The experimental results on the MNIST-USPS and NUS-WIDE-OBJECT datasets reveal that our proposed method learns the target class effectively and is superior to some state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
2秒前
斯文败类应助欧阳采纳,获得10
2秒前
bkagyin应助张铭采纳,获得10
2秒前
Happy完成签到,获得积分10
3秒前
3秒前
田様应助haohoa采纳,获得10
3秒前
FashionBoy应助魄罗bro采纳,获得10
4秒前
超帅连虎完成签到,获得积分0
4秒前
咚巴拉完成签到,获得积分10
4秒前
5秒前
高高访云完成签到,获得积分10
5秒前
6秒前
6秒前
EMMA发布了新的文献求助10
6秒前
2000dw发布了新的文献求助10
7秒前
zry发布了新的文献求助10
7秒前
AliselyChen发布了新的文献求助10
8秒前
279发布了新的文献求助10
8秒前
shuo0976发布了新的文献求助10
8秒前
9秒前
暮歌发布了新的文献求助10
9秒前
10秒前
4444完成签到,获得积分10
10秒前
11秒前
缓慢的芸遥完成签到 ,获得积分10
11秒前
12秒前
张弓完成签到,获得积分10
12秒前
zzz发布了新的文献求助10
14秒前
邹万恶发布了新的文献求助10
15秒前
spock完成签到,获得积分10
15秒前
luoribai发布了新的文献求助10
15秒前
碎花晚完成签到 ,获得积分10
16秒前
wuyisha完成签到,获得积分10
17秒前
朋克发布了新的文献求助10
17秒前
18秒前
CodeCraft应助文静修杰采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352537
求助须知:如何正确求助?哪些是违规求助? 4485363
关于积分的说明 13962944
捐赠科研通 4385316
什么是DOI,文献DOI怎么找? 2409378
邀请新用户注册赠送积分活动 1401795
关于科研通互助平台的介绍 1375406