DMVSVDD: Multi-View Data Novelty Detection with Deep Autoencoding Support Vector Data Description

超球体 新知识检测 计算机科学 人工智能 支持向量机 过度拟合 离群值 深度学习 模式识别(心理学) 新颖性 人工神经网络 过程(计算) 机器学习 数据挖掘 哲学 神学 操作系统
作者
Zeqiu Chen,Kaiyi Zhao,Shulin Sun,Jiayao Li,Shufan Wang,Ruizhi Sun
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:240: 122443-122443 被引量:1
标识
DOI:10.1016/j.eswa.2023.122443
摘要

Novelty detection is usually defined as the identification of new or abnormal objects (outliers) from the normal ones (inliers), which has wide potential applications in the real world. Recently, an effective algorithm called Deep Support Vector Data Description (Deep SVDD) has been proposed for novelty detection, which jointly trains a deep neural network while optimizing a data-enclosing hypersphere in output space. However, some constraints such as hypersphere collapse, limit the adaptability of the model and may affect the model performance. Moreover, most of the existing studies concerning Deep SVDD focus on the novelty detection for single-view data, which may fail to provide an accurate and reliable decision because the single-view data sometimes cannot fully reflect the actual condition of the problem. In this study, we developed an end-to-end deep learning method of novelty detection for multi-view data, i.e., the Deep Multi-View SVDD (DMVSVDD). To fully preserve the correlative and complementary information of multi-view data, we jointly trained multiple deep autoencoding neural networks for multiple views while adaptively optimizing the data-enclosing hypersphere of each view in latent space. A global objective function was proposed, which takes both of the sample reconstruction error minimization and the hypersphere volume minimization into consideration simultaneously to prevent hypersphere collapse in the model. In the global objective function, the hypersphere centers and view weights of different views were designed to adaptively select the better representative features after each epoch during the training process by embedding multi-view target samples into multiple data-enclosing hyperspheres with minimum volumes. The experimental results on the MNIST-USPS and NUS-WIDE-OBJECT datasets reveal that our proposed method learns the target class effectively and is superior to some state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bella完成签到,获得积分20
2秒前
pluto应助falling_learning采纳,获得10
2秒前
LM完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
lh发布了新的文献求助10
5秒前
脑洞疼应助萱棚采纳,获得10
5秒前
领导范儿应助hyl采纳,获得10
6秒前
摸鱼划水发布了新的文献求助10
6秒前
酷波er应助dong采纳,获得10
8秒前
8秒前
歪比巴卜完成签到,获得积分10
8秒前
9秒前
9秒前
YKB发布了新的文献求助10
9秒前
君君发布了新的文献求助10
10秒前
10秒前
天天快乐应助迷人问兰采纳,获得30
10秒前
narzy完成签到 ,获得积分10
10秒前
摸鱼划水完成签到,获得积分10
11秒前
小二郎应助W~舞采纳,获得10
11秒前
zhu关注了科研通微信公众号
13秒前
13秒前
ED应助YKB采纳,获得30
13秒前
CodeCraft应助听闻采纳,获得10
14秒前
Lily发布了新的文献求助10
14秒前
14秒前
tjzhaoll发布了新的文献求助10
15秒前
SYLH应助Jing采纳,获得10
16秒前
kiyo完成签到,获得积分10
16秒前
17秒前
嘻嘻哈哈关注了科研通微信公众号
17秒前
大模型应助plain采纳,获得10
19秒前
Jasper应助扣1送地狱火采纳,获得10
19秒前
enhenlay完成签到,获得积分10
19秒前
19秒前
dong完成签到,获得积分20
21秒前
Abby发布了新的文献求助10
21秒前
丘比特应助追寻的丹烟采纳,获得10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952331
求助须知:如何正确求助?哪些是违规求助? 3497729
关于积分的说明 11088592
捐赠科研通 3228329
什么是DOI,文献DOI怎么找? 1784774
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303