Metabolomics and machine learning approaches for diagnostic and prognostic biomarkers screening in sepsis

代谢组学 败血症 医学 苯丙氨酸 多元分析 单变量 单变量分析 氨基酸代谢 生物信息学 内科学 多元统计 新陈代谢 生物 机器学习 氨基酸 生物化学 计算机科学
作者
Han She,Yuanlin Du,Yunxia Du,Lei Tan,Yang Shunxin,Xi Luo,Qinghui Li,Xinming Xiang,Haibin Lu,Yi Hu,Liangming Liu,Tao Li
出处
期刊:BMC Anesthesiology [Springer Nature]
卷期号:23 (1) 被引量:8
标识
DOI:10.1186/s12871-023-02317-4
摘要

Abstract Background Sepsis is a life-threatening disease with a poor prognosis, and metabolic disorders play a crucial role in its development. This study aims to identify key metabolites that may be associated with the accurate diagnosis and prognosis of sepsis. Methods Septic patients and healthy individuals were enrolled to investigate metabolic changes using non-targeted liquid chromatography-high-resolution mass spectrometry metabolomics. Machine learning algorithms were subsequently employed to identify key differentially expressed metabolites (DEMs). Prognostic-related DEMs were then identified using univariate and multivariate Cox regression analyses. The septic rat model was established to verify the effect of phenylalanine metabolism-related gene MAOA on survival and mean arterial pressure after sepsis. Results A total of 532 DEMs were identified between healthy control and septic patients using metabolomics. The main pathways affected by these DEMs were amino acid biosynthesis, phenylalanine metabolism, tyrosine metabolism, glycine, serine and threonine metabolism, and arginine and proline metabolism. To identify sepsis diagnosis-related biomarkers, support vector machine (SVM) and random forest (RF) algorithms were employed, leading to the identification of four biomarkers. Additionally, analysis of transcriptome data from sepsis patients in the GEO database revealed a significant up-regulation of the phenylalanine metabolism-related gene MAOA in sepsis. Further investigation showed that inhibition of MAOA using the inhibitor RS-8359 reduced phenylalanine levels and improved mean arterial pressure and survival rate in septic rats. Finally, using univariate and multivariate cox regression analysis, six DEMs were identified as prognostic markers for sepsis. Conclusions This study employed metabolomics and machine learning algorithms to identify differential metabolites that are associated with the diagnosis and prognosis of sepsis patients. Unraveling the relationship between metabolic characteristics and sepsis provides new insights into the underlying biological mechanisms, which could potentially assist in the diagnosis and treatment of sepsis. Trial registration This human study was approved by the Ethics Committee of the Research Institute of Surgery (2021–179) and was registered by the Chinese Clinical Trial Registry (Date: 09/12/2021, ChiCTR2200055772).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗的手套完成签到,获得积分10
刚刚
罗明明发布了新的文献求助10
2秒前
Lemonade发布了新的文献求助10
2秒前
wangyi完成签到,获得积分10
3秒前
虚幻龙猫完成签到,获得积分10
3秒前
灰哥的灰发布了新的文献求助10
4秒前
4秒前
哈哈完成签到,获得积分10
4秒前
愿为石桥完成签到,获得积分20
5秒前
无花果应助guomn采纳,获得10
5秒前
得一发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
xhn完成签到 ,获得积分10
6秒前
syiimo发布了新的文献求助10
6秒前
落樱幻梦染星尘完成签到,获得积分10
6秒前
7秒前
7秒前
故意的傲玉应助Hellowa采纳,获得10
8秒前
古的古的应助曲奇采纳,获得10
8秒前
Ava应助YXY采纳,获得10
9秒前
9秒前
有点咸发布了新的文献求助10
9秒前
10秒前
10秒前
FashionBoy应助方方采纳,获得10
10秒前
苏格拉底的嘲笑完成签到,获得积分10
10秒前
36456657应助matthew采纳,获得10
10秒前
Lemonade完成签到,获得积分10
10秒前
11秒前
ws发布了新的文献求助10
12秒前
xu55发布了新的文献求助10
12秒前
alrist发布了新的文献求助30
13秒前
13秒前
小巧的柏柳完成签到 ,获得积分10
13秒前
wangfaqing942发布了新的文献求助30
13秒前
科研通AI2S应助Lemonade采纳,获得10
13秒前
sun完成签到,获得积分10
14秒前
文艺的雨完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522770
求助须知:如何正确求助?哪些是违规求助? 3103775
关于积分的说明 9267140
捐赠科研通 2800323
什么是DOI,文献DOI怎么找? 1536921
邀请新用户注册赠送积分活动 715217
科研通“疑难数据库(出版商)”最低求助积分说明 708692