Communication and Computation Efficient Federated Learning for Internet of Vehicles With a Constrained Latency

计算机科学 随机梯度下降算法 无线 延迟(音频) 收敛速度 梯度下降 互联网 计算机网络 分布式计算 频道(广播) 人工智能 电信 人工神经网络 万维网
作者
Shengli Liu,Guanding Yu,Rui Yin,Jiantao Yuan,Fengzhong Qu
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (1): 1038-1052 被引量:6
标识
DOI:10.1109/tvt.2023.3309088
摘要

Considering the privacy and security issues in Internet of Vehicles (IoV), wireless federated learning (FL) can be adopted to facilitate various emerging vehicular applications. However, wireless FL would suffer from a large learning latency due to the limitation of bandwidth and computing power as well as the unreliable communication caused by vehicle mobility. To cope with these challenges, a new structure is designed in this paper to facilitate the implementation of FL for IoV. First, we apply the gradient compression and mini-batch federated stochastic gradient descent to reduce the local gradient transmission and computation. Then, with theoretical analysis of the convergence rate and the learning latency, the learning performance can be improved by maximizing the convergence rate under a constrained latency. Accordingly, an optimization problem is formulated to jointly optimize compression ratio, batch size, and spectrum allocation. To solve this problem, an iterative algorithm is developed by problem decomposition. From the results, compression ratio and batch size should be adjusted according to the channel state information and computing power of the road side units to boost the learning efficiency at the cost of slight degradation on the learning accuracy. The superiority of the proposed algorithm is finally demonstrated through extensive simulations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郑明明发布了新的文献求助10
刚刚
浮世之笙发布了新的文献求助10
刚刚
刚刚
嘴角微微仰起笑应助feike采纳,获得30
刚刚
嗒嗒完成签到,获得积分10
刚刚
1秒前
思源应助hanzhiyuxing采纳,获得10
1秒前
1秒前
1秒前
漫漫完成签到,获得积分10
1秒前
clueless完成签到,获得积分10
1秒前
玉襄完成签到,获得积分20
1秒前
2秒前
Jasper应助EnJay0528采纳,获得10
2秒前
学术嫪毐发布了新的文献求助10
2秒前
时尚的寄云完成签到,获得积分10
2秒前
2秒前
2秒前
整齐乌发布了新的文献求助10
2秒前
26完成签到,获得积分10
2秒前
2秒前
3秒前
Smf完成签到,获得积分10
3秒前
lzxlzxlzx发布了新的文献求助10
3秒前
奋斗的绿海完成签到,获得积分10
3秒前
CodeCraft应助欢呼小笼包采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
我是老大应助魏泽洪采纳,获得10
4秒前
Mia2完成签到 ,获得积分10
5秒前
斯文败类应助flynn3735采纳,获得10
5秒前
程楚珂完成签到,获得积分10
5秒前
eternity136发布了新的文献求助10
5秒前
蒙蒙细雨完成签到,获得积分10
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785