Exome copy number variant detection, analysis and classification in a large cohort of families with undiagnosed rare genetic disease

拷贝数变化 外显子组测序 外显子组 遗传学 生物 基因检测 基因组学 计算生物学 表型 基因组 基因
作者
Gabrielle Lemire,Alba Sanchis‐Juan,Kathryn Russell,Samantha Baxter,Katherine R. Chao,Moriel Singer‐Berk,Emily Groopman,Isaac Wong,Eleina England,Julia K. Goodrich,Lynn Pais,Christina Austin‐Tse,Stephanie DiTroia,Emily O’Heir,Vijay Ganesh,Monica H. Wojcik,Emily Evangelista,Hana Snow,Ikeoluwa Osei‐Owusu,Jack Fu,Mugdha Singh,Yulia Mostovoy,Steve S. Huang,Kiran Garimella,Samantha L. Kirkham,Jennifer E. Neil,Diane D. Shao,Christopher A. Walsh,Emanuela Argili,Catherine Le,Elliott H. Sherr,Joseph G. Gleeson,Shirlee Shril,Ronen Schneider,Friedhelm Hildebrandt,Vijay G. Sankaran,Jill A. Madden,Casie A. Genetti,Alan H. Beggs,Pankaj B. Agrawal,Kinga M. Bujakowska,Emily Place,Eric A. Pierce,Sandra Donkervoort,Carsten G. Bönnemann,Lyndon Gallacher,Zornitza Stark,Tiong Yang Tan,Susan M. White,Ana Töpf,Kate Bushby,Mark D. Fleming,Martin R. Pollak,Katrin Õunap,Sander Pajusalu,Kirsten A. Donald,Zandrè Bruwer,Gianina Ravenscroft,Nigel G. Laing,Daniel G. MacArthur,Heidi L. Rehm,Michael E. Talkowski,Harrison Brand,Anne O’Donnell-Luria
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2023.10.05.23296595
摘要

Abstract Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and with new innovative methods can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the GREGoR consortium. Each family’s CNV data was analyzed using the seqr platform and candidate CNVs classified using the 2020 ACMG/ClinGen CNV interpretation standards. We developed additional evidence criteria to address situations not covered by the current standards. The addition of CNV calling to exome analysis identified causal CNVs for 173 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb with estimates that 44% would not have been detected by standard chromosomal microarrays. The causal CNVs consisted of 141 deletions, 15 duplications, 4 suspected complex structural variants (SVs), 3 insertions and 10 complex SVs, the latter two groups being identified by orthogonal validation methods. We interpreted 153 CNVs as likely pathogenic/pathogenic and 20 CNVs as high interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小橙子完成签到 ,获得积分10
1秒前
2秒前
2秒前
福娃发布了新的文献求助10
2秒前
3秒前
达斯维完成签到,获得积分10
3秒前
浪迹天涯发布了新的文献求助10
3秒前
今后应助杜嘟嘟采纳,获得30
3秒前
4秒前
4秒前
清圆527完成签到,获得积分10
4秒前
JamesPei应助Zhong采纳,获得10
4秒前
5秒前
5秒前
6秒前
6秒前
6秒前
Emma完成签到 ,获得积分10
7秒前
7秒前
7秒前
清新的问枫完成签到,获得积分10
8秒前
8秒前
在水一方应助大方小白采纳,获得10
8秒前
阿凡达完成签到,获得积分10
8秒前
神勇的雅香应助大方小白采纳,获得10
8秒前
彬彬发布了新的文献求助10
8秒前
刘鹏宇发布了新的文献求助10
8秒前
斯文败类应助Stormi采纳,获得10
9秒前
10秒前
10秒前
木子发布了新的文献求助10
11秒前
yuyuyu完成签到 ,获得积分10
11秒前
11秒前
choi完成签到,获得积分10
11秒前
芒竹发布了新的文献求助10
11秒前
璐璐发布了新的文献求助10
11秒前
wwwww完成签到,获得积分10
12秒前
pearl发布了新的文献求助10
12秒前
一一完成签到,获得积分10
12秒前
李双艳发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740