已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Machine Learning‐Based Unenhanced Radiomics Approach to Distinguishing Between Benign and Malignant Breast Lesions Using T2‐Weighted and Diffusion‐Weighted MRI

医学 乳房磁振造影 乳腺癌 回顾性队列研究 放射科 逻辑回归 乳腺摄影术 无线电技术 卡帕 乳房成像 磁共振弥散成像 双雷达 磁共振成像 核医学 癌症 内科学 哲学 语言学
作者
Yulu Liu,Xiaoxuan Jia,Jiaqi Zhao,Peng Yuan,Xun Yao,Xuege Hu,Jingjing Cui,Haoquan Chen,Xiufeng Chen,Jing Wu,Nan Hong,Shu Wang,Yi Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:60 (2): 600-612 被引量:9
标识
DOI:10.1002/jmri.29111
摘要

Background Breast MRI has been recommended as supplemental screening tool to mammography and breast ultrasound of breast cancer by international guidelines, but its long examination time and use of contrast material remains concerning. Purpose To develop an unenhanced radiomics model with using non‐gadolinium based sequences for detecting breast cancer based on T2‐weighted (T2W) and diffusion‐weighted (DW) MRI. Study Type Retrospective analysis followed by retrospective and prospective cohorts study. Population 1760 patients: Of these, 1293 for model construction ( n = 775 for training and 518 for validation). The remaining patients for model testing in internal retrospective ( n = 167), internal prospective ( n = 188), and external retrospective ( n = 112) cohorts. Field Strength/Sequence 3.0T MR scanners from two institution. T2WI, DWI, and first contrast‐enhanced T1‐weighted sequence. Assessment AUCs in distinguishing breast cancer were compared between combined model with gadolinium agent sequence and unenhanced model. Subsequently, the AUCs in testing cohorts of unenhanced model was compared with two radiologists' diagnosis for this research. Finally, patient subgroup analysis in testing cohorts was performed based on clinical subgroups and different types of malignancies. Statistical Tests Mann–Whitney U test, Kruskal‐Wallis H test, chi‐square test, weighted kappa test, and DeLong's test. Results The unenhanced radiomics model performed best under Gaussian process (GP) classifiers (AUC: training, 0.893; validation, 0.848) compared to support vector machine (SVM) and logistic, showing favorable prediction in testing cohorts (AUCs, 0.818–0.840). The AUCs for the unenhanced radiomics model were not statistically different in five cohorts from those of the combined radiomics model ( P , 0.317–0.816), as well as the two radiologists ( P , 0.181–0.918). The unenhanced radiomics model was least successful in identifying ductal carcinoma in situ, whereas did not show statistical significance in other subgroups. Data Conclusion An unenhanced radiomics model based on T2WI and DWI has comparable diagnostic accuracy to the combined model using the gadolinium agent. Level of Evidence 4 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cooper应助干净巧荷采纳,获得10
2秒前
天天呼的海角完成签到,获得积分10
2秒前
3秒前
6秒前
6秒前
陈咪咪完成签到 ,获得积分10
7秒前
Orange应助cjlinhunu采纳,获得10
7秒前
JeromineJade发布了新的文献求助10
9秒前
酸海椒发布了新的文献求助10
10秒前
Lee发布了新的文献求助10
11秒前
11秒前
情怀应助JaneChen采纳,获得30
12秒前
潇洒的觅柔完成签到,获得积分10
13秒前
Mic应助舒服的水壶采纳,获得10
14秒前
嘻嘻发布了新的文献求助10
15秒前
15秒前
15秒前
微风完成签到 ,获得积分10
15秒前
16秒前
18秒前
ww417发布了新的文献求助10
19秒前
19秒前
19秒前
科研通AI6.1应助gndd采纳,获得30
20秒前
斯文败类应助诚心文博采纳,获得10
21秒前
皮代谷发布了新的文献求助10
21秒前
21秒前
22秒前
456244yyy发布了新的文献求助10
24秒前
大模型应助攀登采纳,获得30
24秒前
cjlinhunu发布了新的文献求助10
27秒前
NexusExplorer应助wsw111采纳,获得10
27秒前
27秒前
27秒前
JaneChen发布了新的文献求助30
28秒前
田様应助皮代谷采纳,获得10
29秒前
30秒前
东方欲晓关注了科研通微信公众号
33秒前
33秒前
柒_l发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771671
求助须知:如何正确求助?哪些是违规求助? 5593024
关于积分的说明 15428138
捐赠科研通 4904964
什么是DOI,文献DOI怎么找? 2639092
邀请新用户注册赠送积分活动 1586960
关于科研通互助平台的介绍 1541911