A Machine Learning‐Based Unenhanced Radiomics Approach to Distinguishing Between Benign and Malignant Breast Lesions Using T2‐Weighted and Diffusion‐Weighted MRI

医学 乳房磁振造影 乳腺癌 回顾性队列研究 放射科 逻辑回归 乳腺摄影术 无线电技术 卡帕 乳房成像 磁共振弥散成像 双雷达 磁共振成像 核医学 癌症 内科学 语言学 哲学
作者
Yulu Liu,Xiaoxuan Jia,Jiaqi Zhao,Peng Yuan,Xun Yao,Xuege Hu,Jingjing Cui,Haoquan Chen,Xiufeng Chen,Jing Wu,Nan Hong,Shu Wang,Yi Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:60 (2): 600-612 被引量:9
标识
DOI:10.1002/jmri.29111
摘要

Background Breast MRI has been recommended as supplemental screening tool to mammography and breast ultrasound of breast cancer by international guidelines, but its long examination time and use of contrast material remains concerning. Purpose To develop an unenhanced radiomics model with using non‐gadolinium based sequences for detecting breast cancer based on T2‐weighted (T2W) and diffusion‐weighted (DW) MRI. Study Type Retrospective analysis followed by retrospective and prospective cohorts study. Population 1760 patients: Of these, 1293 for model construction ( n = 775 for training and 518 for validation). The remaining patients for model testing in internal retrospective ( n = 167), internal prospective ( n = 188), and external retrospective ( n = 112) cohorts. Field Strength/Sequence 3.0T MR scanners from two institution. T2WI, DWI, and first contrast‐enhanced T1‐weighted sequence. Assessment AUCs in distinguishing breast cancer were compared between combined model with gadolinium agent sequence and unenhanced model. Subsequently, the AUCs in testing cohorts of unenhanced model was compared with two radiologists' diagnosis for this research. Finally, patient subgroup analysis in testing cohorts was performed based on clinical subgroups and different types of malignancies. Statistical Tests Mann–Whitney U test, Kruskal‐Wallis H test, chi‐square test, weighted kappa test, and DeLong's test. Results The unenhanced radiomics model performed best under Gaussian process (GP) classifiers (AUC: training, 0.893; validation, 0.848) compared to support vector machine (SVM) and logistic, showing favorable prediction in testing cohorts (AUCs, 0.818–0.840). The AUCs for the unenhanced radiomics model were not statistically different in five cohorts from those of the combined radiomics model ( P , 0.317–0.816), as well as the two radiologists ( P , 0.181–0.918). The unenhanced radiomics model was least successful in identifying ductal carcinoma in situ, whereas did not show statistical significance in other subgroups. Data Conclusion An unenhanced radiomics model based on T2WI and DWI has comparable diagnostic accuracy to the combined model using the gadolinium agent. Level of Evidence 4 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
泡泡脑瓜完成签到,获得积分10
1秒前
小二郎应助小刺猬采纳,获得200
1秒前
1秒前
橘落发布了新的文献求助10
1秒前
谦让的焱完成签到,获得积分10
1秒前
1秒前
烟花应助糖小夕采纳,获得10
2秒前
2秒前
orixero应助JN采纳,获得10
2秒前
bkagyin应助哈哈哈哈采纳,获得10
2秒前
2秒前
dongkaimi完成签到,获得积分10
3秒前
3秒前
kakakaku发布了新的文献求助10
4秒前
4秒前
4秒前
啦啦啦发布了新的文献求助10
4秒前
5秒前
Yeeellow完成签到,获得积分20
5秒前
lin完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
西西发布了新的文献求助10
6秒前
botion发布了新的文献求助10
6秒前
6秒前
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
活泼白山完成签到 ,获得积分10
8秒前
zty发布了新的文献求助10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
wy.he应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
9秒前
华仔应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262276
求助须知:如何正确求助?哪些是违规求助? 4423286
关于积分的说明 13769277
捐赠科研通 4297943
什么是DOI,文献DOI怎么找? 2358148
邀请新用户注册赠送积分活动 1354541
关于科研通互助平台的介绍 1315696