Decoding speech perception from non-invasive brain recordings

解码方法 计算机科学 语音识别 感知 集合(抽象数据类型) 神经解码 卷积神经网络 人工智能 自然语言处理 心理学 神经科学 电信 程序设计语言
作者
Alexandre Défossez,Charlotte Caucheteux,Jérémy Rapin,Ori Kabeli,King J
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:5 (10): 1097-1107 被引量:3
标识
DOI:10.1038/s42256-023-00714-5
摘要

Abstract Decoding speech from brain activity is a long-awaited goal in both healthcare and neuroscience. Invasive devices have recently led to major milestones in this regard: deep-learning algorithms trained on intracranial recordings can now start to decode elementary linguistic features such as letters, words and audio-spectrograms. However, extending this approach to natural speech and non-invasive brain recordings remains a major challenge. Here we introduce a model trained with contrastive learning to decode self-supervised representations of perceived speech from the non-invasive recordings of a large cohort of healthy individuals. To evaluate this approach, we curate and integrate four public datasets, encompassing 175 volunteers recorded with magneto-encephalography or electro-encephalography while they listened to short stories and isolated sentences. The results show that our model can identify, from 3 seconds of magneto-encephalography signals, the corresponding speech segment with up to 41% accuracy out of more than 1,000 distinct possibilities on average across participants, and with up to 80% in the best participants—a performance that allows the decoding of words and phrases absent from the training set. The comparison of our model with a variety of baselines highlights the importance of a contrastive objective, pretrained representations of speech and a common convolutional architecture simultaneously trained across multiple participants. Finally, the analysis of the decoder’s predictions suggests that they primarily depend on lexical and contextual semantic representations. Overall, this effective decoding of perceived speech from non-invasive recordings delineates a promising path to decode language from brain activity, without putting patients at risk of brain surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
niu完成签到,获得积分10
刚刚
杪夏二八完成签到 ,获得积分10
刚刚
小二郎应助得咎采纳,获得10
刚刚
刚刚
刚刚
wanci应助Jiali采纳,获得20
1秒前
dave0831完成签到,获得积分10
1秒前
1秒前
LIGHT完成签到,获得积分10
1秒前
加油少年完成签到,获得积分10
2秒前
ccyyll完成签到,获得积分10
2秒前
Carry发布了新的文献求助10
2秒前
华仔应助才下眉头采纳,获得10
2秒前
灵巧的雨莲完成签到,获得积分10
3秒前
赵文若发布了新的文献求助10
3秒前
花椒泡茶完成签到,获得积分10
3秒前
wgw完成签到,获得积分10
3秒前
大饼卷肉完成签到,获得积分10
3秒前
小白完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
轻歌水越发布了新的文献求助10
4秒前
guijunmola完成签到,获得积分10
4秒前
5秒前
baibaibai完成签到,获得积分10
6秒前
ocdspkss发布了新的文献求助10
6秒前
SiDi发布了新的文献求助10
7秒前
陌上苏凉完成签到,获得积分10
8秒前
8秒前
蕯匿完成签到,获得积分10
8秒前
执着的爆米花完成签到,获得积分10
9秒前
进击的研狗完成签到 ,获得积分10
9秒前
9秒前
10秒前
SiDi完成签到,获得积分10
11秒前
搜集达人应助Carry采纳,获得10
12秒前
刘果果完成签到,获得积分10
12秒前
13秒前
13秒前
moon689发布了新的文献求助10
13秒前
七月完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600