Artificial intelligence in clinical pharmacology: A case study and scoping review of large language models and bioweapon potential

透明度(行为) 斯科普斯 立法 工程伦理学 脆弱性(计算) 医学 管理科学 政治学 风险分析(工程) 计算机科学 梅德林 工程类 计算机安全 法学
作者
Igor Rubinić,Marija Kurtov,Ivan Rubinić,Robert Likić,Paul I. Dargan,David M. Wood
出处
期刊:British Journal of Clinical Pharmacology [Wiley]
卷期号:90 (3): 620-628 被引量:9
标识
DOI:10.1111/bcp.15899
摘要

This paper aims to explore the possibility of employing large language models (LLMs) – a type of artificial intelligence (AI) – in clinical pharmacology, with a focus on its possible misuse in bioweapon development. Additionally, ethical considerations, legislation and potential risk reduction measures are analysed. The existing literature is reviewed to investigate the potential misuse of AI and LLMs in bioweapon creation. The search includes articles from PubMed, Scopus and Web of Science Core Collection that were identified using a specific protocol. To explore the regulatory landscape, the OECD.ai platform was used. The review highlights the dual‐use vulnerability of AI and LLMs, with a focus on bioweapon development. Subsequently, a case study is used to illustrate the potential of AI manipulation resulting in harmful substance synthesis. Existing regulations inadequately address the ethical concerns tied to AI and LLMs. Mitigation measures are proposed, including technical solutions (explainable AI), establishing ethical guidelines through collaborative efforts, and implementing policy changes to create a comprehensive regulatory framework. The integration of AI and LLMs into clinical pharmacology presents invaluable opportunities, while also introducing significant ethical and safety considerations. Addressing the dual‐use nature of AI requires robust regulations, as well as adopting a strategic approach grounded in technical solutions and ethical values following the principles of transparency, accountability and safety. Additionally, AI's potential role in developing countermeasures against novel hazardous substances is underscored. By adopting a proactive approach, the potential benefits of AI and LLMs can be fully harnessed while minimizing the associated risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静的煎饼关注了科研通微信公众号
刚刚
果汁发布了新的文献求助10
1秒前
hehe594完成签到,获得积分10
1秒前
ciags完成签到,获得积分20
1秒前
1秒前
迷你的岩完成签到,获得积分10
5秒前
7秒前
西瓜皮完成签到,获得积分10
7秒前
8秒前
Ava应助西瓜采纳,获得10
9秒前
towerman完成签到,获得积分10
9秒前
organicboy完成签到 ,获得积分10
9秒前
独特白枫发布了新的文献求助10
9秒前
9秒前
在险峰完成签到 ,获得积分10
10秒前
啊TiP完成签到,获得积分10
10秒前
陈开心完成签到,获得积分10
11秒前
11秒前
烟花应助悲凉的紊采纳,获得10
12秒前
乐乐应助飘逸楷瑞采纳,获得20
13秒前
随便完成签到,获得积分10
13秒前
妍yan完成签到,获得积分10
14秒前
17秒前
初七123完成签到 ,获得积分10
17秒前
无花果应助科研通管家采纳,获得10
17秒前
18秒前
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
yufanhui应助科研通管家采纳,获得10
18秒前
獨家記憶发布了新的文献求助10
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得10
18秒前
JamesPei应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
orixero应助Aimee采纳,获得10
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
我是老大应助科研通管家采纳,获得10
19秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
A Dissection Guide & Atlas to the Rabbit 600
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 500
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3104880
求助须知:如何正确求助?哪些是违规求助? 2756128
关于积分的说明 7637295
捐赠科研通 2409779
什么是DOI,文献DOI怎么找? 1278480
科研通“疑难数据库(出版商)”最低求助积分说明 617439
版权声明 599242