Review of the application of modeling and estimation method in system identification for nonlinear state-space models

非线性系统 鉴定(生物学) 状态空间 状态空间表示 估计 计算机科学 系统标识 空格(标点符号) 国家(计算机科学) 估计理论 控制理论(社会学) 生物系统 数学 算法 人工智能 数据挖掘 统计 物理 工程类 生物 操作系统 量子力学 植物 系统工程 控制(管理) 度量(数据仓库)
作者
Xiaonan Li,Ping Ma,Tao Chao,Ming Yang
出处
期刊:Advances in Complex Systems [World Scientific]
卷期号:15 (05)
标识
DOI:10.1142/s179396232350054x
摘要

Nonlinear state-space models (SSMs) are widely used to model actual industrial processes. System identification is an important method to reduce the uncertainty of the simulation model. In recent years, system identification has been greatly improved with the rise of machine learning. However, there are a few reviews on the latest identification methods based on machine learning. Therefore, this paper focuses on the latest development of identification methods for nonlinear SSM in recent years. In particular, this paper comprehensively compares the identification methods based on traditional methods and machine learning. In addition, according to the type of uncertainty, we divided the paper into the parameter’s identification and the identification of unknown parts of the model. Compared with the classification of other reviews, our classification method is clearer. Briefly, this paper organizes the review according to the classification of uncertainty. Each type is extended from offline identification to online identification. Specifically, interval identification and point estimation methods are reviewed for offline parameter identification. For online parameter identification, point estimation methods are reviewed. In the case that the model is partially unknown or black-box, the modeling methods and identification methods are mainly reviewed. In addition to the traditional methods, this paper focuses on the latest progress in the application of machine learning in system recognition. Finally, at the end of the paper, this paper summarizes the existing methods and points out the key problems that still need to be solved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ljh发布了新的文献求助10
1秒前
吴裙裙完成签到,获得积分20
1秒前
2秒前
2秒前
蓝天应助awaer采纳,获得10
3秒前
蓝天应助东方傲儿采纳,获得10
3秒前
灵巧冰露发布了新的文献求助10
3秒前
852应助明理念桃采纳,获得10
3秒前
3秒前
3秒前
4秒前
蓝天应助生命化育采纳,获得10
4秒前
4秒前
青山见我发布了新的文献求助10
4秒前
cfv发布了新的文献求助10
4秒前
大气映冬完成签到,获得积分10
5秒前
5秒前
Criminology34应助无zzz的人采纳,获得10
5秒前
烟花应助yz采纳,获得10
6秒前
6秒前
通通通发布了新的文献求助30
6秒前
6秒前
7秒前
贾哲宇完成签到,获得积分10
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
小猪找库里完成签到,获得积分10
8秒前
月月月鸟伟完成签到,获得积分10
8秒前
慕青应助kkeeaa采纳,获得10
8秒前
9秒前
zsqqqqq发布了新的文献求助10
9秒前
个性的紫菜应助上善若水采纳,获得10
9秒前
Ashore发布了新的文献求助10
9秒前
9秒前
俊逸的念桃完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784558
求助须知:如何正确求助?哪些是违规求助? 5682922
关于积分的说明 15464566
捐赠科研通 4913664
什么是DOI,文献DOI怎么找? 2644848
邀请新用户注册赠送积分活动 1592770
关于科研通互助平台的介绍 1547187