亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Review of the application of modeling and estimation method in system identification for nonlinear state-space models

非线性系统 鉴定(生物学) 状态空间 状态空间表示 估计 计算机科学 系统标识 空格(标点符号) 国家(计算机科学) 估计理论 控制理论(社会学) 生物系统 数学 算法 人工智能 数据挖掘 统计 物理 工程类 生物 操作系统 量子力学 植物 系统工程 控制(管理) 度量(数据仓库)
作者
Xiaonan Li,Ping Ma,Tao Chao,Ming Yang
出处
期刊:Advances in Complex Systems [World Scientific]
卷期号:15 (05)
标识
DOI:10.1142/s179396232350054x
摘要

Nonlinear state-space models (SSMs) are widely used to model actual industrial processes. System identification is an important method to reduce the uncertainty of the simulation model. In recent years, system identification has been greatly improved with the rise of machine learning. However, there are a few reviews on the latest identification methods based on machine learning. Therefore, this paper focuses on the latest development of identification methods for nonlinear SSM in recent years. In particular, this paper comprehensively compares the identification methods based on traditional methods and machine learning. In addition, according to the type of uncertainty, we divided the paper into the parameter’s identification and the identification of unknown parts of the model. Compared with the classification of other reviews, our classification method is clearer. Briefly, this paper organizes the review according to the classification of uncertainty. Each type is extended from offline identification to online identification. Specifically, interval identification and point estimation methods are reviewed for offline parameter identification. For online parameter identification, point estimation methods are reviewed. In the case that the model is partially unknown or black-box, the modeling methods and identification methods are mainly reviewed. In addition to the traditional methods, this paper focuses on the latest progress in the application of machine learning in system recognition. Finally, at the end of the paper, this paper summarizes the existing methods and points out the key problems that still need to be solved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DBP87弹完成签到 ,获得积分10
2秒前
伊娃发布了新的文献求助10
4秒前
5秒前
科研花完成签到 ,获得积分10
14秒前
伊娃完成签到 ,获得积分10
18秒前
自觉汽车完成签到,获得积分10
29秒前
38秒前
ESTER完成签到 ,获得积分10
40秒前
45秒前
王者归来完成签到,获得积分10
47秒前
Criminology34应助科研通管家采纳,获得10
49秒前
Criminology34应助科研通管家采纳,获得10
49秒前
乐乐应助科研通管家采纳,获得30
49秒前
Criminology34应助科研通管家采纳,获得10
49秒前
Criminology34应助科研通管家采纳,获得10
49秒前
59秒前
深情安青应助默默襄采纳,获得10
1分钟前
1分钟前
1分钟前
默默襄发布了新的文献求助10
1分钟前
breeze完成签到,获得积分10
1分钟前
怪僻完成签到,获得积分10
1分钟前
1分钟前
小二郎应助llpj采纳,获得10
1分钟前
成就的笑南完成签到 ,获得积分10
2分钟前
2分钟前
读研霹雳完成签到 ,获得积分10
2分钟前
llpj发布了新的文献求助10
2分钟前
学习新思想完成签到,获得积分10
2分钟前
完美世界应助阿然采纳,获得10
2分钟前
浮游应助zy采纳,获得20
2分钟前
Jasper应助llpj采纳,获得10
2分钟前
2分钟前
爱吃大米饭完成签到 ,获得积分10
2分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
2分钟前
青竹完成签到,获得积分10
2分钟前
冉亦完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302033
求助须知:如何正确求助?哪些是违规求助? 4449329
关于积分的说明 13848232
捐赠科研通 4335497
什么是DOI,文献DOI怎么找? 2380331
邀请新用户注册赠送积分活动 1375325
关于科研通互助平台的介绍 1341472