Review of the application of modeling and estimation method in system identification for nonlinear state-space models

非线性系统 鉴定(生物学) 状态空间 状态空间表示 估计 计算机科学 系统标识 空格(标点符号) 国家(计算机科学) 估计理论 控制理论(社会学) 生物系统 数学 算法 人工智能 数据挖掘 统计 物理 工程类 生物 植物 控制(管理) 系统工程 量子力学 度量(数据仓库) 操作系统
作者
Xiaonan Li,Ping Ma,Tao Chao,Ming Yang
出处
期刊:Advances in Complex Systems [World Scientific]
卷期号:15 (05)
标识
DOI:10.1142/s179396232350054x
摘要

Nonlinear state-space models (SSMs) are widely used to model actual industrial processes. System identification is an important method to reduce the uncertainty of the simulation model. In recent years, system identification has been greatly improved with the rise of machine learning. However, there are a few reviews on the latest identification methods based on machine learning. Therefore, this paper focuses on the latest development of identification methods for nonlinear SSM in recent years. In particular, this paper comprehensively compares the identification methods based on traditional methods and machine learning. In addition, according to the type of uncertainty, we divided the paper into the parameter’s identification and the identification of unknown parts of the model. Compared with the classification of other reviews, our classification method is clearer. Briefly, this paper organizes the review according to the classification of uncertainty. Each type is extended from offline identification to online identification. Specifically, interval identification and point estimation methods are reviewed for offline parameter identification. For online parameter identification, point estimation methods are reviewed. In the case that the model is partially unknown or black-box, the modeling methods and identification methods are mainly reviewed. In addition to the traditional methods, this paper focuses on the latest progress in the application of machine learning in system recognition. Finally, at the end of the paper, this paper summarizes the existing methods and points out the key problems that still need to be solved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Twonej给lilianan的求助进行了留言
1秒前
dddddw完成签到,获得积分10
2秒前
儒雅致远发布了新的文献求助10
2秒前
3秒前
祖乐萱发布了新的文献求助10
5秒前
陈信宏完成签到,获得积分10
6秒前
6秒前
逍遥子完成签到,获得积分10
6秒前
7秒前
ff发布了新的文献求助10
8秒前
浮游应助djbj2022采纳,获得10
8秒前
科研通AI6应助双夏采纳,获得30
10秒前
冬日空虚完成签到,获得积分10
10秒前
11秒前
13秒前
14秒前
大个应助小黄采纳,获得10
14秒前
15秒前
15秒前
jack发布了新的文献求助10
16秒前
爱笑的天空完成签到,获得积分10
16秒前
17秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
simdows完成签到,获得积分10
20秒前
科研通AI6应助季文婷采纳,获得10
20秒前
脑洞疼应助jack采纳,获得10
24秒前
123应助儒雅致远采纳,获得10
24秒前
慕青应助儒雅致远采纳,获得10
24秒前
善学以致用应助万事都灵采纳,获得10
25秒前
Wonder罗完成签到,获得积分20
26秒前
小蘑菇应助坦率幻灵采纳,获得10
30秒前
30秒前
31秒前
32秒前
34秒前
msf0073应助JJJ采纳,获得10
36秒前
躺躺躺发布了新的文献求助10
37秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741