Threshold effect of data amount and grid size on urban land use type identification using multi-source data fusion

网格 多源 航程(航空) 计算机科学 传感器融合 鉴定(生物学) 树遍历 算法 数据挖掘 统计 数学 人工智能 工程类 植物 几何学 生物 航空航天工程
作者
Hong Lv,Zening Wu,Xinjian Guan,Yu Meng,Huiliang Wang,Yihong Zhou
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:98: 104855-104855 被引量:6
标识
DOI:10.1016/j.scs.2023.104855
摘要

Reliable urban land use maps are important for sustainable development and planning. Currently, the effects of different data source combinations and grid sizes on mapping results have rarely been studied. To reduce subjectivity in data selection, 10 collected multi-source spatial data were combined by traversal to create 1013 simulated combination schemes. Considering the size range of these data sources, 10 fusion grid sizes were selected. Then, a multi-source data learning model for urban land use classification (ULUC) was established by combining convolutional neural networks and long short-term memory. By taking Jinshui District (Zhengzhou, China) as an example, 10130 ULUC mappings were obtained. The maximum accuracy (82.9%) was achieved in the combination scheme D1D2D3D5D6D7D8D9D10 at a grid size of 30 m. The optimal solution among simulation 10130 schemes had an accuracy of 82.9%, a 14.7% improvement compared to the average accuracy of 67.6%. It is found that (1) The maximum accuracy showed a tendency to increase and then decrease with the increase in the variety of multi-source data combinations;(2) As the grid size decreases, the maximum accuracy also exhibited a tendency to increase and then decrease; (3) There was a significant threshold effect for both data combination types and grid sizes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
wzy发布了新的文献求助10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
黑夜无头骑士完成签到 ,获得积分10
1秒前
spc68应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
2秒前
大个应助搞怪不斜采纳,获得10
2秒前
2秒前
zgrmws应助金长慧采纳,获得50
2秒前
2秒前
朝暮应助科研通管家采纳,获得10
2秒前
rebubu应助科研通管家采纳,获得10
2秒前
安然应助科研通管家采纳,获得10
2秒前
2秒前
ghost100应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
朝暮应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
打打应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
完美世界应助自然的如风采纳,获得20
4秒前
4秒前
4秒前
彩色发布了新的文献求助10
4秒前
LD完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
共享精神应助JJJ采纳,获得50
5秒前
6秒前
所所应助星星星星采纳,获得10
6秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693193
求助须知:如何正确求助?哪些是违规求助? 5091453
关于积分的说明 15210744
捐赠科研通 4850188
什么是DOI,文献DOI怎么找? 2601603
邀请新用户注册赠送积分活动 1553417
关于科研通互助平台的介绍 1511406