UPCoL: Uncertainty-Informed Prototype Consistency Learning for Semi-supervised Medical Image Segmentation

计算机科学 判别式 分割 人工智能 一致性(知识库) 机器学习 编码(集合论) 水准点(测量) 班级(哲学) 模式识别(心理学) 数据挖掘 集合(抽象数据类型) 大地测量学 程序设计语言 地理
作者
Wenjing Lu,Jiahao Lei,Peng Qiu,Rui Sheng,Jinhua Zhou,Xinwu Lu,Yang Yang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 662-672 被引量:8
标识
DOI:10.1007/978-3-031-43901-8_63
摘要

Semi-supervised learning (SSL) has emerged as a promising approach for medical image segmentation, while its capacity has still been limited by the difficulty in quantifying the reliability of unlabeled data and the lack of effective strategies for exploiting unlabeled regions with ambiguous predictions. To address these issues, we propose an Uncertainty-informed Prototype Consistency Learning (UPCoL) framework, which learns fused prototype representations from labeled and unlabeled data judiciously by incorporating an entropy-based uncertainty mask. The consistency constraint enforced on prototypes leads to a more discriminative and compact prototype representation for each class, thus optimizing the distribution of hidden embeddings. We experiment with two benchmark datasets of two-class semi-supervised segmentation, left atrium and pancreas, as well as a three-class multi-center dataset of type B aortic dissection. For all three datasets, UPCoL outperforms the state-of-the-art SSL methods, demonstrating the efficacy of the uncertainty-informed prototype learning strategy (Code is available at https://github.com/VivienLu/UPCoL ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻雨筠发布了新的文献求助10
刚刚
1秒前
2秒前
3秒前
ll发布了新的文献求助10
3秒前
内向苡完成签到,获得积分10
4秒前
Uaena完成签到,获得积分10
4秒前
研友_VZG7GZ应助筱尤采纳,获得10
4秒前
醒醒完成签到,获得积分10
5秒前
5秒前
科目三应助niuya采纳,获得10
5秒前
zkwww完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
软嘴唇发布了新的文献求助10
8秒前
8秒前
8秒前
96121发布了新的文献求助10
10秒前
xie完成签到,获得积分10
10秒前
11秒前
英俊的铭应助欣喜威采纳,获得10
11秒前
orixero应助张张崽采纳,获得10
11秒前
软嘴唇完成签到,获得积分10
13秒前
windli发布了新的文献求助10
14秒前
16秒前
16秒前
17秒前
宗忻完成签到,获得积分10
17秒前
赘婿应助Queena采纳,获得10
17秒前
18秒前
6666发布了新的文献求助10
20秒前
SciGPT应助芊锐采纳,获得10
20秒前
iiianchen发布了新的文献求助10
22秒前
天天快乐应助嘻嘻采纳,获得10
22秒前
最爱周黑鸭完成签到,获得积分10
23秒前
热心的裙子完成签到,获得积分10
24秒前
Eureka完成签到,获得积分10
24秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434440
求助须知:如何正确求助?哪些是违规求助? 4546716
关于积分的说明 14204115
捐赠科研通 4466772
什么是DOI,文献DOI怎么找? 2448303
邀请新用户注册赠送积分活动 1439099
关于科研通互助平台的介绍 1415969