Permeability Prediction of Carbonate Cores With Gaussian Process Regression Model

线性回归 支持向量机 克里金 均方误差 回归 回归分析 人工智能 高斯过程 计算机科学 数学 高斯分布 模式识别(心理学) 机器学习 统计 量子力学 物理
作者
Xingang Bu,Hassan Hadi Saleh,Ming Han,Abdulkareem M. AlSofi
标识
DOI:10.2118/212592-ms
摘要

Abstract Machine leaning (ML) methods are widely adopted in predictions affected by various factors. This paper presents a step-by-step workflow of applying a ML approach to develop a heterogeneous permeability prediction model from the CT images of core samples. In this work, over ten thousand 3-D sub-image were randomly extracted from the CT images of two heterogeneous carbonate core samples. The permeability of each sub-image is simulated using pore network modeling (PNM) method. Ten features including porosity, pore size, surface area, specific surface area and connection coefficient etc. are extracted from sub-image by a statistical method. Three training datasets were built with features and permeability. Each set of training data is input into a ML model pool, which contains 19 regression models of 5 types including linear regression models, regression trees, support vector machines, Gaussian process regression models and ensembles of trees. Then, regression models are trained to identify the one that can yield the best permeability prediction. The trained model with the highest R-Squared value is selected for permeability prediction from binary CT images. Overall, comparing the training outputs indicate that Gaussian Process Regression models (GPR) correlate features and permeability well. For the tested heterogeneous core plugs, the exponential Gaussian Process model performs the best. The R-Squared values of the three sets of training data are 0.88, 0.87 and 0.91 respectively. Afterwards, the selected ML model was tested with additional data, and the R-squared value of each test dataset was greater than 0.85, confirming a strong predictive performance. The trained model based on ML method eliminates the conventional time-consuming operations including distance transformation and watershed segmentation. It also avoids excessive memory consumption, which makes the method suitable for images with large size. The paper provides a way to develop an alternative approach of PNM simulation method for permeability prediction from CT images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cxw发布了新的文献求助10
1秒前
mayun95发布了新的文献求助10
4秒前
So完成签到 ,获得积分10
4秒前
M旭旭发布了新的文献求助10
4秒前
王子姗完成签到,获得积分10
4秒前
田様应助fczx采纳,获得10
6秒前
123sly发布了新的文献求助30
7秒前
Akim应助QinQin采纳,获得10
8秒前
Herman完成签到 ,获得积分10
8秒前
Twonej给呢呢的求助进行了留言
8秒前
xing完成签到,获得积分10
9秒前
9秒前
CipherSage应助李卓航采纳,获得10
9秒前
9秒前
M旭旭完成签到,获得积分10
10秒前
科研通AI6应助于富强采纳,获得10
11秒前
Ganann完成签到 ,获得积分10
12秒前
vv完成签到 ,获得积分10
12秒前
有趣的银发布了新的文献求助10
12秒前
13秒前
14秒前
上官若男应助yun采纳,获得40
15秒前
18秒前
田様应助Cyuan采纳,获得10
18秒前
18秒前
123sly完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
传奇3应助QinQin采纳,获得10
22秒前
严天飞发布了新的文献求助10
23秒前
Nora发布了新的文献求助10
23秒前
三三完成签到,获得积分10
23秒前
youyouyou发布了新的文献求助10
24秒前
orangel完成签到,获得积分10
26秒前
李卓航发布了新的文献求助10
27秒前
27秒前
28秒前
会会完成签到 ,获得积分10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716