Permeability Prediction of Carbonate Cores With Gaussian Process Regression Model

线性回归 支持向量机 克里金 均方误差 回归 回归分析 人工智能 高斯过程 计算机科学 数学 高斯分布 模式识别(心理学) 机器学习 统计 量子力学 物理
作者
Xingang Bu,Hassan Hadi Saleh,Ming Han,Abdulkareem M. AlSofi
标识
DOI:10.2118/212592-ms
摘要

Abstract Machine leaning (ML) methods are widely adopted in predictions affected by various factors. This paper presents a step-by-step workflow of applying a ML approach to develop a heterogeneous permeability prediction model from the CT images of core samples. In this work, over ten thousand 3-D sub-image were randomly extracted from the CT images of two heterogeneous carbonate core samples. The permeability of each sub-image is simulated using pore network modeling (PNM) method. Ten features including porosity, pore size, surface area, specific surface area and connection coefficient etc. are extracted from sub-image by a statistical method. Three training datasets were built with features and permeability. Each set of training data is input into a ML model pool, which contains 19 regression models of 5 types including linear regression models, regression trees, support vector machines, Gaussian process regression models and ensembles of trees. Then, regression models are trained to identify the one that can yield the best permeability prediction. The trained model with the highest R-Squared value is selected for permeability prediction from binary CT images. Overall, comparing the training outputs indicate that Gaussian Process Regression models (GPR) correlate features and permeability well. For the tested heterogeneous core plugs, the exponential Gaussian Process model performs the best. The R-Squared values of the three sets of training data are 0.88, 0.87 and 0.91 respectively. Afterwards, the selected ML model was tested with additional data, and the R-squared value of each test dataset was greater than 0.85, confirming a strong predictive performance. The trained model based on ML method eliminates the conventional time-consuming operations including distance transformation and watershed segmentation. It also avoids excessive memory consumption, which makes the method suitable for images with large size. The paper provides a way to develop an alternative approach of PNM simulation method for permeability prediction from CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小药童应助外星人采纳,获得10
2秒前
3秒前
3秒前
4秒前
4秒前
安琪完成签到,获得积分10
4秒前
wsqg123完成签到,获得积分10
5秒前
chang完成签到 ,获得积分10
6秒前
无限的千凝完成签到 ,获得积分10
7秒前
sm关注了科研通微信公众号
8秒前
不要慌完成签到 ,获得积分10
9秒前
10秒前
11秒前
小小小乐完成签到 ,获得积分10
12秒前
我心向明月完成签到,获得积分10
14秒前
笔调完成签到,获得积分10
14秒前
淡淡依霜完成签到 ,获得积分10
16秒前
英吉利25发布了新的文献求助20
16秒前
lu完成签到,获得积分10
17秒前
标致忆丹发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
twinkle完成签到 ,获得积分10
18秒前
sally_5202完成签到 ,获得积分10
23秒前
23秒前
xtutang完成签到,获得积分10
23秒前
zmx123123完成签到,获得积分10
24秒前
25秒前
丙队长完成签到,获得积分10
25秒前
25秒前
曹沛岚完成签到,获得积分10
27秒前
蛋花肉圆汤完成签到,获得积分10
27秒前
LDC完成签到,获得积分10
28秒前
chen完成签到,获得积分10
28秒前
31秒前
31秒前
量子星尘发布了新的文献求助10
31秒前
小九完成签到,获得积分10
31秒前
sm发布了新的文献求助10
31秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450513
求助须知:如何正确求助?哪些是违规求助? 4558247
关于积分的说明 14265829
捐赠科研通 4481797
什么是DOI,文献DOI怎么找? 2454981
邀请新用户注册赠送积分活动 1445752
关于科研通互助平台的介绍 1421882