Permeability Prediction of Carbonate Cores With Gaussian Process Regression Model

线性回归 支持向量机 克里金 均方误差 回归 回归分析 人工智能 高斯过程 计算机科学 数学 高斯分布 模式识别(心理学) 机器学习 统计 量子力学 物理
作者
Xingang Bu,Hassan Hadi Saleh,Ming Han,Abdulkareem M. AlSofi
标识
DOI:10.2118/212592-ms
摘要

Abstract Machine leaning (ML) methods are widely adopted in predictions affected by various factors. This paper presents a step-by-step workflow of applying a ML approach to develop a heterogeneous permeability prediction model from the CT images of core samples. In this work, over ten thousand 3-D sub-image were randomly extracted from the CT images of two heterogeneous carbonate core samples. The permeability of each sub-image is simulated using pore network modeling (PNM) method. Ten features including porosity, pore size, surface area, specific surface area and connection coefficient etc. are extracted from sub-image by a statistical method. Three training datasets were built with features and permeability. Each set of training data is input into a ML model pool, which contains 19 regression models of 5 types including linear regression models, regression trees, support vector machines, Gaussian process regression models and ensembles of trees. Then, regression models are trained to identify the one that can yield the best permeability prediction. The trained model with the highest R-Squared value is selected for permeability prediction from binary CT images. Overall, comparing the training outputs indicate that Gaussian Process Regression models (GPR) correlate features and permeability well. For the tested heterogeneous core plugs, the exponential Gaussian Process model performs the best. The R-Squared values of the three sets of training data are 0.88, 0.87 and 0.91 respectively. Afterwards, the selected ML model was tested with additional data, and the R-squared value of each test dataset was greater than 0.85, confirming a strong predictive performance. The trained model based on ML method eliminates the conventional time-consuming operations including distance transformation and watershed segmentation. It also avoids excessive memory consumption, which makes the method suitable for images with large size. The paper provides a way to develop an alternative approach of PNM simulation method for permeability prediction from CT images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11111发布了新的文献求助10
刚刚
Ziqing完成签到,获得积分10
刚刚
面壁思过应助xh采纳,获得10
刚刚
畅快不平发布了新的文献求助10
刚刚
大虫子完成签到,获得积分10
刚刚
1秒前
炙热草丛发布了新的文献求助10
1秒前
XNF完成签到,获得积分10
2秒前
我是老大应助谦让靖儿采纳,获得10
2秒前
聪明的忆丹完成签到 ,获得积分10
3秒前
年轻的熊猫完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
Brave发布了新的文献求助10
6秒前
机灵的衬衫完成签到 ,获得积分10
6秒前
7秒前
Echo发布了新的文献求助10
8秒前
浮游应助柚子采纳,获得10
8秒前
阿信必发JACS完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
10秒前
haqime完成签到 ,获得积分10
10秒前
10秒前
朴实水壶发布了新的文献求助10
11秒前
11秒前
静静在学呢完成签到,获得积分10
11秒前
zzzxhhr发布了新的文献求助10
12秒前
烟花应助Brave采纳,获得10
12秒前
NOV完成签到,获得积分10
13秒前
Xxxxyg发布了新的文献求助10
13秒前
宋子涵完成签到 ,获得积分10
13秒前
15秒前
灵巧蓉完成签到,获得积分10
15秒前
令和发布了新的文献求助10
15秒前
dongqing12311完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901