已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Permeability Prediction of Carbonate Cores With Gaussian Process Regression Model

线性回归 支持向量机 克里金 均方误差 回归 回归分析 人工智能 高斯过程 计算机科学 数学 高斯分布 模式识别(心理学) 机器学习 统计 量子力学 物理
作者
Xingang Bu,Hassan Hadi Saleh,Ming Han,Abdulkareem M. AlSofi
标识
DOI:10.2118/212592-ms
摘要

Abstract Machine leaning (ML) methods are widely adopted in predictions affected by various factors. This paper presents a step-by-step workflow of applying a ML approach to develop a heterogeneous permeability prediction model from the CT images of core samples. In this work, over ten thousand 3-D sub-image were randomly extracted from the CT images of two heterogeneous carbonate core samples. The permeability of each sub-image is simulated using pore network modeling (PNM) method. Ten features including porosity, pore size, surface area, specific surface area and connection coefficient etc. are extracted from sub-image by a statistical method. Three training datasets were built with features and permeability. Each set of training data is input into a ML model pool, which contains 19 regression models of 5 types including linear regression models, regression trees, support vector machines, Gaussian process regression models and ensembles of trees. Then, regression models are trained to identify the one that can yield the best permeability prediction. The trained model with the highest R-Squared value is selected for permeability prediction from binary CT images. Overall, comparing the training outputs indicate that Gaussian Process Regression models (GPR) correlate features and permeability well. For the tested heterogeneous core plugs, the exponential Gaussian Process model performs the best. The R-Squared values of the three sets of training data are 0.88, 0.87 and 0.91 respectively. Afterwards, the selected ML model was tested with additional data, and the R-squared value of each test dataset was greater than 0.85, confirming a strong predictive performance. The trained model based on ML method eliminates the conventional time-consuming operations including distance transformation and watershed segmentation. It also avoids excessive memory consumption, which makes the method suitable for images with large size. The paper provides a way to develop an alternative approach of PNM simulation method for permeability prediction from CT images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐小鸭完成签到 ,获得积分10
刚刚
HI完成签到 ,获得积分10
刚刚
Vaseegara完成签到 ,获得积分10
2秒前
文欣完成签到 ,获得积分0
3秒前
3秒前
心澄宇静完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
半眠日记发布了新的文献求助10
7秒前
Martin_L完成签到,获得积分10
8秒前
KUAILIZI发布了新的文献求助10
8秒前
科研通AI6应助un采纳,获得10
9秒前
NexusExplorer应助un采纳,获得10
9秒前
Carrots完成签到 ,获得积分10
9秒前
唐小鸭发布了新的文献求助10
10秒前
ceeray23发布了新的文献求助20
12秒前
江枫渔火VC完成签到 ,获得积分10
12秒前
六沉完成签到 ,获得积分10
13秒前
不敬仙师第一人完成签到,获得积分10
13秒前
开拖拉机的芍药完成签到 ,获得积分10
14秒前
阿文完成签到 ,获得积分10
14秒前
善学以致用应助张嘉辉采纳,获得10
15秒前
科研通AI2S应助心澄宇静采纳,获得10
15秒前
xxxksk完成签到 ,获得积分10
15秒前
Ss完成签到 ,获得积分10
16秒前
ADJ完成签到,获得积分10
17秒前
18秒前
Fxy完成签到 ,获得积分10
19秒前
天真稀完成签到,获得积分10
19秒前
19秒前
Vincent24S完成签到,获得积分10
22秒前
uikymh完成签到 ,获得积分0
24秒前
冷艳水儿发布了新的文献求助10
25秒前
老黑完成签到 ,获得积分10
27秒前
27秒前
link发布了新的文献求助10
27秒前
Cc完成签到 ,获得积分10
28秒前
落山姬完成签到,获得积分10
29秒前
123完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590158
求助须知:如何正确求助?哪些是违规求助? 4674624
关于积分的说明 14794757
捐赠科研通 4630578
什么是DOI,文献DOI怎么找? 2532630
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468576