Permeability Prediction of Carbonate Cores With Gaussian Process Regression Model

线性回归 支持向量机 克里金 均方误差 回归 回归分析 人工智能 高斯过程 计算机科学 数学 高斯分布 模式识别(心理学) 机器学习 统计 物理 量子力学
作者
Xingang Bu,Hassan Hadi Saleh,Ming Han,Abdulkareem M. AlSofi
标识
DOI:10.2118/212592-ms
摘要

Abstract Machine leaning (ML) methods are widely adopted in predictions affected by various factors. This paper presents a step-by-step workflow of applying a ML approach to develop a heterogeneous permeability prediction model from the CT images of core samples. In this work, over ten thousand 3-D sub-image were randomly extracted from the CT images of two heterogeneous carbonate core samples. The permeability of each sub-image is simulated using pore network modeling (PNM) method. Ten features including porosity, pore size, surface area, specific surface area and connection coefficient etc. are extracted from sub-image by a statistical method. Three training datasets were built with features and permeability. Each set of training data is input into a ML model pool, which contains 19 regression models of 5 types including linear regression models, regression trees, support vector machines, Gaussian process regression models and ensembles of trees. Then, regression models are trained to identify the one that can yield the best permeability prediction. The trained model with the highest R-Squared value is selected for permeability prediction from binary CT images. Overall, comparing the training outputs indicate that Gaussian Process Regression models (GPR) correlate features and permeability well. For the tested heterogeneous core plugs, the exponential Gaussian Process model performs the best. The R-Squared values of the three sets of training data are 0.88, 0.87 and 0.91 respectively. Afterwards, the selected ML model was tested with additional data, and the R-squared value of each test dataset was greater than 0.85, confirming a strong predictive performance. The trained model based on ML method eliminates the conventional time-consuming operations including distance transformation and watershed segmentation. It also avoids excessive memory consumption, which makes the method suitable for images with large size. The paper provides a way to develop an alternative approach of PNM simulation method for permeability prediction from CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ANIVIA发布了新的文献求助10
1秒前
jxinxxx发布了新的文献求助30
1秒前
咖啡头发发布了新的文献求助10
2秒前
kingwill应助辰月贰拾采纳,获得20
2秒前
3秒前
4秒前
5秒前
无缘发布了新的文献求助10
5秒前
Hello应助糊涂的新竹采纳,获得10
6秒前
8秒前
wangximin完成签到,获得积分10
8秒前
第一张发布了新的文献求助10
9秒前
聪慧小燕发布了新的文献求助10
10秒前
橙子发布了新的文献求助10
13秒前
13秒前
崔昕雨发布了新的文献求助10
13秒前
第一张完成签到,获得积分10
14秒前
斗罗大陆发布了新的文献求助10
15秒前
SciGPT应助程瑞哲采纳,获得10
17秒前
18秒前
张曼发布了新的文献求助10
19秒前
20秒前
我是老大应助123采纳,获得10
20秒前
21秒前
酷波er应助优秀的嚣采纳,获得10
22秒前
司徒诗蕾完成签到 ,获得积分10
23秒前
离枝完成签到 ,获得积分10
23秒前
24秒前
YC发布了新的文献求助30
24秒前
KSCN完成签到,获得积分10
25秒前
李昕123发布了新的文献求助10
26秒前
26秒前
咖啡头发完成签到,获得积分10
27秒前
hetao286完成签到,获得积分10
28秒前
30秒前
30秒前
归尘发布了新的文献求助10
31秒前
33秒前
传奇3应助WUJIEJIE采纳,获得10
34秒前
qcck发布了新的文献求助10
34秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3433948
求助须知:如何正确求助?哪些是违规求助? 3031147
关于积分的说明 8941083
捐赠科研通 2719166
什么是DOI,文献DOI怎么找? 1491676
科研通“疑难数据库(出版商)”最低求助积分说明 689372
邀请新用户注册赠送积分活动 685523