亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Permeability Prediction of Carbonate Cores With Gaussian Process Regression Model

线性回归 支持向量机 克里金 均方误差 回归 回归分析 人工智能 高斯过程 计算机科学 数学 高斯分布 模式识别(心理学) 机器学习 统计 量子力学 物理
作者
Xingang Bu,Hassan Hadi Saleh,Ming Han,Abdulkareem M. AlSofi
标识
DOI:10.2118/212592-ms
摘要

Abstract Machine leaning (ML) methods are widely adopted in predictions affected by various factors. This paper presents a step-by-step workflow of applying a ML approach to develop a heterogeneous permeability prediction model from the CT images of core samples. In this work, over ten thousand 3-D sub-image were randomly extracted from the CT images of two heterogeneous carbonate core samples. The permeability of each sub-image is simulated using pore network modeling (PNM) method. Ten features including porosity, pore size, surface area, specific surface area and connection coefficient etc. are extracted from sub-image by a statistical method. Three training datasets were built with features and permeability. Each set of training data is input into a ML model pool, which contains 19 regression models of 5 types including linear regression models, regression trees, support vector machines, Gaussian process regression models and ensembles of trees. Then, regression models are trained to identify the one that can yield the best permeability prediction. The trained model with the highest R-Squared value is selected for permeability prediction from binary CT images. Overall, comparing the training outputs indicate that Gaussian Process Regression models (GPR) correlate features and permeability well. For the tested heterogeneous core plugs, the exponential Gaussian Process model performs the best. The R-Squared values of the three sets of training data are 0.88, 0.87 and 0.91 respectively. Afterwards, the selected ML model was tested with additional data, and the R-squared value of each test dataset was greater than 0.85, confirming a strong predictive performance. The trained model based on ML method eliminates the conventional time-consuming operations including distance transformation and watershed segmentation. It also avoids excessive memory consumption, which makes the method suitable for images with large size. The paper provides a way to develop an alternative approach of PNM simulation method for permeability prediction from CT images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
渺渺未来星完成签到 ,获得积分20
4秒前
14秒前
可乐完成签到 ,获得积分20
15秒前
23秒前
33秒前
Andrewlabeth完成签到,获得积分10
48秒前
51秒前
菠萝包完成签到 ,获得积分10
54秒前
58秒前
an慧儿发布了新的文献求助10
1分钟前
连安阳完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
大方安白发布了新的文献求助10
1分钟前
大方安白完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
Lh发布了新的文献求助30
2分钟前
2分钟前
李依完成签到,获得积分10
2分钟前
Lh完成签到,获得积分10
2分钟前
2分钟前
2分钟前
明理丹烟发布了新的文献求助10
2分钟前
2分钟前
明理丹烟完成签到,获得积分10
2分钟前
2分钟前
金007发布了新的文献求助10
2分钟前
cy0824完成签到 ,获得积分10
2分钟前
我要读博士完成签到 ,获得积分10
3分钟前
ceeray23发布了新的文献求助20
3分钟前
3分钟前
Asofi完成签到,获得积分10
3分钟前
3分钟前
传奇3应助白华苍松采纳,获得10
3分钟前
科研通AI2S应助Asofi采纳,获得10
3分钟前
x夏天完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509496
求助须知:如何正确求助?哪些是违规求助? 4604404
关于积分的说明 14489722
捐赠科研通 4539189
什么是DOI,文献DOI怎么找? 2487356
邀请新用户注册赠送积分活动 1469804
关于科研通互助平台的介绍 1442032