Permeability Prediction of Carbonate Cores With Gaussian Process Regression Model

线性回归 支持向量机 克里金 均方误差 回归 回归分析 人工智能 高斯过程 计算机科学 数学 高斯分布 模式识别(心理学) 机器学习 统计 量子力学 物理
作者
Xingang Bu,Hassan Hadi Saleh,Ming Han,Abdulkareem M. AlSofi
标识
DOI:10.2118/212592-ms
摘要

Abstract Machine leaning (ML) methods are widely adopted in predictions affected by various factors. This paper presents a step-by-step workflow of applying a ML approach to develop a heterogeneous permeability prediction model from the CT images of core samples. In this work, over ten thousand 3-D sub-image were randomly extracted from the CT images of two heterogeneous carbonate core samples. The permeability of each sub-image is simulated using pore network modeling (PNM) method. Ten features including porosity, pore size, surface area, specific surface area and connection coefficient etc. are extracted from sub-image by a statistical method. Three training datasets were built with features and permeability. Each set of training data is input into a ML model pool, which contains 19 regression models of 5 types including linear regression models, regression trees, support vector machines, Gaussian process regression models and ensembles of trees. Then, regression models are trained to identify the one that can yield the best permeability prediction. The trained model with the highest R-Squared value is selected for permeability prediction from binary CT images. Overall, comparing the training outputs indicate that Gaussian Process Regression models (GPR) correlate features and permeability well. For the tested heterogeneous core plugs, the exponential Gaussian Process model performs the best. The R-Squared values of the three sets of training data are 0.88, 0.87 and 0.91 respectively. Afterwards, the selected ML model was tested with additional data, and the R-squared value of each test dataset was greater than 0.85, confirming a strong predictive performance. The trained model based on ML method eliminates the conventional time-consuming operations including distance transformation and watershed segmentation. It also avoids excessive memory consumption, which makes the method suitable for images with large size. The paper provides a way to develop an alternative approach of PNM simulation method for permeability prediction from CT images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彻鱼发布了新的文献求助10
刚刚
XLL小绿绿发布了新的文献求助10
1秒前
Jacob完成签到,获得积分10
2秒前
ssw完成签到,获得积分10
2秒前
丘比特应助飞飞采纳,获得10
2秒前
青椒超人完成签到,获得积分10
2秒前
华国锋完成签到,获得积分0
3秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI6.1应助开心果采纳,获得10
4秒前
Hello应助友好妙菱采纳,获得10
4秒前
yoyo完成签到 ,获得积分10
4秒前
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
牧牧完成签到,获得积分10
10秒前
共享精神应助木子杨采纳,获得10
10秒前
幽默沛山完成签到 ,获得积分10
12秒前
12秒前
12秒前
wo发布了新的文献求助10
12秒前
13秒前
机灵墨镜完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
年轻晟睿发布了新的文献求助10
14秒前
Liao发布了新的文献求助20
15秒前
zzz发布了新的文献求助10
17秒前
17秒前
17秒前
友好妙菱发布了新的文献求助10
17秒前
18秒前
白泽阳发布了新的文献求助10
18秒前
彻鱼关注了科研通微信公众号
19秒前
20秒前
20秒前
小马甲应助Holly采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770594
求助须知:如何正确求助?哪些是违规求助? 5586008
关于积分的说明 15424556
捐赠科研通 4904087
什么是DOI,文献DOI怎么找? 2638509
邀请新用户注册赠送积分活动 1586384
关于科研通互助平台的介绍 1541462