Permeability Prediction of Carbonate Cores With Gaussian Process Regression Model

线性回归 支持向量机 克里金 均方误差 回归 回归分析 人工智能 高斯过程 计算机科学 数学 高斯分布 模式识别(心理学) 机器学习 统计 物理 量子力学
作者
Xingang Bu,Hassan Hadi Saleh,Ming Han,Abdulkareem M. AlSofi
标识
DOI:10.2118/212592-ms
摘要

Abstract Machine leaning (ML) methods are widely adopted in predictions affected by various factors. This paper presents a step-by-step workflow of applying a ML approach to develop a heterogeneous permeability prediction model from the CT images of core samples. In this work, over ten thousand 3-D sub-image were randomly extracted from the CT images of two heterogeneous carbonate core samples. The permeability of each sub-image is simulated using pore network modeling (PNM) method. Ten features including porosity, pore size, surface area, specific surface area and connection coefficient etc. are extracted from sub-image by a statistical method. Three training datasets were built with features and permeability. Each set of training data is input into a ML model pool, which contains 19 regression models of 5 types including linear regression models, regression trees, support vector machines, Gaussian process regression models and ensembles of trees. Then, regression models are trained to identify the one that can yield the best permeability prediction. The trained model with the highest R-Squared value is selected for permeability prediction from binary CT images. Overall, comparing the training outputs indicate that Gaussian Process Regression models (GPR) correlate features and permeability well. For the tested heterogeneous core plugs, the exponential Gaussian Process model performs the best. The R-Squared values of the three sets of training data are 0.88, 0.87 and 0.91 respectively. Afterwards, the selected ML model was tested with additional data, and the R-squared value of each test dataset was greater than 0.85, confirming a strong predictive performance. The trained model based on ML method eliminates the conventional time-consuming operations including distance transformation and watershed segmentation. It also avoids excessive memory consumption, which makes the method suitable for images with large size. The paper provides a way to develop an alternative approach of PNM simulation method for permeability prediction from CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助安徒采纳,获得10
1秒前
wanzixian发布了新的文献求助10
1秒前
Han.T完成签到,获得积分10
2秒前
tianmeiling发布了新的文献求助10
2秒前
adding发布了新的文献求助10
2秒前
单映菱发布了新的文献求助10
3秒前
3秒前
3秒前
康康发布了新的文献求助10
4秒前
4秒前
赘婿应助武雨寒采纳,获得10
5秒前
6秒前
EMMA完成签到,获得积分10
6秒前
要减肥发布了新的文献求助10
6秒前
zhangyafei完成签到,获得积分10
6秒前
9秒前
EMMA发布了新的文献求助10
9秒前
科研通AI5应助海燕采纳,获得10
10秒前
luf完成签到,获得积分10
11秒前
大方的蓝发布了新的文献求助10
15秒前
NexusExplorer应助小小怪下士采纳,获得10
15秒前
墨枝发布了新的文献求助10
15秒前
华仔应助香菜芋头采纳,获得10
16秒前
17秒前
17秒前
负责从丹完成签到,获得积分10
20秒前
20秒前
21秒前
LZQ应助weixiaosi采纳,获得10
21秒前
武雨寒发布了新的文献求助10
22秒前
丘比特应助代代采纳,获得10
22秒前
zhzssaijj发布了新的文献求助10
23秒前
海燕发布了新的文献求助10
23秒前
所所应助超级柜子采纳,获得10
24秒前
25秒前
嘻嘻嘻嘻完成签到,获得积分20
26秒前
Ay关注了科研通微信公众号
26秒前
26秒前
毕襄完成签到,获得积分20
27秒前
YUQIONG完成签到,获得积分20
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967544
求助须知:如何正确求助?哪些是违规求助? 3512763
关于积分的说明 11165008
捐赠科研通 3247759
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528