过电位
析氧
碱性水电解
电解水
电解
分解水
电化学
制氢
材料科学
电极
化学工程
气泡
氢氧化物
纳米技术
氢
化学
催化作用
电解质
物理化学
工程类
并行计算
有机化学
光催化
生物化学
计算机科学
作者
Xi Xu,Gangwen Fu,Yuxuan Wang,Qinghe Cao,Yanran Xun,Chen Li,Cao Guan,Wei Huang
出处
期刊:Nano Letters
[American Chemical Society]
日期:2023-01-12
卷期号:23 (2): 629-636
被引量:43
标识
DOI:10.1021/acs.nanolett.2c04380
摘要
The practical application of electrochemical water splitting has been plagued by the sluggish kinetics of bubble generation and the slow escape of bubbles which block reaction surfaces at high current densities. Here, 3D-printed Ni (3DP Ni) electrodes with a rationally designed periodic structure and surface chemistry are reported, where the macroscopic ordered pores allow fast bubble evolution and emission, while the microporosity ensures a high electrochemically active surface area (ECSA). When they are further loaded with MoNi4 and NiFe layered double hydroxide active materials, the 3D electrodes deliver 500 mA cm-2 at an overpotential of 104 mV for the hydrogen evolution reaction (HER) and 310 mV for the oxygen evolution reaction (OER), respectively. An all-3D-printed alkaline electrolyzer (including electrodes, membrane, and cell) delivers 500 mA cm-2 at a remarkable voltage of 1.63 V with no noticeable performance decay after 1000 h. Such a tailored bubble trajectory demonstrates feasible solutions for future large-scale clean energy production.
科研通智能强力驱动
Strongly Powered by AbleSci AI