Hacd2 deficiency in mice leads to an early and lethal mitochondrial disease

基因敲除 生物 线粒体 基因剔除小鼠 心磷脂 细胞生物学 表型 粒线体疾病 遗传学 线粒体DNA 基因 磷脂
作者
Nahed Khadhraoui,Alexandre Prola,Aymeline Vandestienne,Jordan Blondelle,Laurent Guillaud,Guillaume Courtin,Maxime Bodak,Bastien Prost,Hélène Huet,Mélody Wintrebert,Christine Péchoux,Audrey Solgadi,Frédéric Relaix,Laurent Tiret,Fanny Pilot‐Storck
出处
期刊:Molecular metabolism [Elsevier]
卷期号:69: 101677-101677 被引量:2
标识
DOI:10.1016/j.molmet.2023.101677
摘要

Mitochondria fuel most animal cells with ATP, ensuring proper energetic metabolism of organs. Early and extensive mitochondrial dysfunction often leads to severe disorders through multiorgan failure. Hacd2 gene encodes an enzyme involved in very long chain fatty acid (C ≥ 18) synthesis, yet its roles in vivo remain poorly understood. Since mitochondria function relies on specific properties of their membranes conferred by a particular phospholipid composition, we investigated if Hacd2 gene participates to mitochondrial integrity. We generated two mouse models, the first one leading to a partial knockdown of Hacd2 expression and the second one, to a complete knockout of Hacd2 expression. We performed an in-depth analysis of the associated phenotypes, from whole organism to molecular scale. Thanks to these models, we show that Hacd2 displays an early and broad expression, and that its deficiency in mice is lethal. Specifically, partial knockdown of Hacd2 expression leads to death within one to four weeks after birth, from a sudden growth arrest followed by cachexia and lethargy. The total knockout of Hacd2 is even more severe, characterized by embryonic lethality around E9.5 following developmental arrest and pronounced cardiovascular malformations. In-depth mechanistic analysis revealed that Hacd2 deficiency causes altered mitochondrial efficiency and ultrastructure, as well as accumulation of oxidized cardiolipin. Altogether, these data indicate that the Hacd2 gene is essential for energetic metabolism during embryonic and postnatal development, acting through the control of proper mitochondrial organization and function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LeoXu完成签到,获得积分10
1秒前
2秒前
青梅煮酒完成签到,获得积分10
2秒前
芈冖完成签到,获得积分10
2秒前
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
2秒前
寒鸦应助熊研研采纳,获得30
2秒前
无花果应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
3秒前
hzy6688完成签到,获得积分10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
null应助科研通管家采纳,获得50
3秒前
李健应助科研通管家采纳,获得10
3秒前
chen应助科研通管家采纳,获得50
3秒前
ding应助Apricity采纳,获得10
3秒前
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
3秒前
打打应助科研通管家采纳,获得30
3秒前
3秒前
星辰大海应助科研通管家采纳,获得10
4秒前
4秒前
求助人员应助科研通管家采纳,获得10
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637185
求助须知:如何正确求助?哪些是违规求助? 4742945
关于积分的说明 14998249
捐赠科研通 4795434
什么是DOI,文献DOI怎么找? 2561969
邀请新用户注册赠送积分活动 1521481
关于科研通互助平台的介绍 1481513