Hacd2 deficiency in mice leads to an early and lethal mitochondrial disease

基因敲除 生物 线粒体 基因剔除小鼠 心磷脂 细胞生物学 表型 粒线体疾病 遗传学 线粒体DNA 基因 磷脂
作者
Nahed Khadhraoui,Alexandre Prola,Aymeline Vandestienne,Jordan Blondelle,Laurent Guillaud,Guillaume Courtin,Maxime Bodak,Bastien Prost,Hélène Huet,Mélody Wintrebert,Christine Péchoux,Audrey Solgadi,Frédéric Relaix,Laurent Tiret,Fanny Pilot‐Storck
出处
期刊:Molecular metabolism [Elsevier BV]
卷期号:69: 101677-101677 被引量:2
标识
DOI:10.1016/j.molmet.2023.101677
摘要

Mitochondria fuel most animal cells with ATP, ensuring proper energetic metabolism of organs. Early and extensive mitochondrial dysfunction often leads to severe disorders through multiorgan failure. Hacd2 gene encodes an enzyme involved in very long chain fatty acid (C ≥ 18) synthesis, yet its roles in vivo remain poorly understood. Since mitochondria function relies on specific properties of their membranes conferred by a particular phospholipid composition, we investigated if Hacd2 gene participates to mitochondrial integrity. We generated two mouse models, the first one leading to a partial knockdown of Hacd2 expression and the second one, to a complete knockout of Hacd2 expression. We performed an in-depth analysis of the associated phenotypes, from whole organism to molecular scale. Thanks to these models, we show that Hacd2 displays an early and broad expression, and that its deficiency in mice is lethal. Specifically, partial knockdown of Hacd2 expression leads to death within one to four weeks after birth, from a sudden growth arrest followed by cachexia and lethargy. The total knockout of Hacd2 is even more severe, characterized by embryonic lethality around E9.5 following developmental arrest and pronounced cardiovascular malformations. In-depth mechanistic analysis revealed that Hacd2 deficiency causes altered mitochondrial efficiency and ultrastructure, as well as accumulation of oxidized cardiolipin. Altogether, these data indicate that the Hacd2 gene is essential for energetic metabolism during embryonic and postnatal development, acting through the control of proper mitochondrial organization and function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_LX2vJZ完成签到,获得积分10
1秒前
热心的秋莲完成签到,获得积分10
1秒前
传奇3应助舒心的世界采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
欢喜大地发布了新的文献求助10
2秒前
2秒前
英俊的铭应助神秘猎牛人采纳,获得30
3秒前
CipherSage应助三九采纳,获得10
3秒前
无情山水完成签到,获得积分20
3秒前
早早完成签到,获得积分10
3秒前
4秒前
深情安青应助Tamarin采纳,获得10
4秒前
酷波er应助机灵的忆梅采纳,获得10
4秒前
6秒前
Srui完成签到,获得积分10
7秒前
刘欣发布了新的文献求助10
7秒前
00发布了新的文献求助10
8秒前
8秒前
彭于晏应助dd采纳,获得10
8秒前
北林完成签到,获得积分10
9秒前
11秒前
吉吉发布了新的文献求助10
11秒前
Wxx发布了新的文献求助10
12秒前
失眠的代芙关注了科研通微信公众号
12秒前
gao完成签到,获得积分10
13秒前
聂白晴发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助150
14秒前
李爱国应助安若采纳,获得10
15秒前
Saline关注了科研通微信公众号
16秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
changping应助科研通管家采纳,获得150
17秒前
Ava应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
晴空万里应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
tt应助科研通管家采纳,获得10
17秒前
尉迟希望应助科研通管家采纳,获得10
17秒前
17秒前
浮游应助科研通管家采纳,获得10
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142593
求助须知:如何正确求助?哪些是违规求助? 4340821
关于积分的说明 13518386
捐赠科研通 4180828
什么是DOI,文献DOI怎么找? 2292600
邀请新用户注册赠送积分活动 1293261
关于科研通互助平台的介绍 1235765