Quantitative and Qualitative Analysis of PCC-based Change detection methods over Agricultural land using Sentinel-2 Dataset

分类器(UML) 计算机科学 人工神经网络 农用地 人工智能 农业 模式识别(心理学) 机器学习 数据挖掘 地理 考古
作者
Gurwinder Singh,Ganesh Kumar Sethi,Sartajvir Singh
标识
DOI:10.1109/ican56228.2022.10007391
摘要

To plan production, the sowing, and harvesting of a particular crop, and the performance of marketing activities information about yields is important for both the traders and producers. In this study, various efforts have been made to extract critical information for agriculture land use classification areas using Sentinel-2 datasets, which was not possible with the help of multi-spectral datasets. As part of the current work, the artificial neural networks (ANN) classifier is combined with the post-classification comparison (PCC), thereby predicting seasonal variability from satellite imagery. The ANN classifier is incorporated into the post-classification comparison procedure, called ANN-based change detection. As part of the demonstration, the datasets were acquired using Sentinel-2 datasets during the period 2017 – 2018 over the agricultural land in Block Khamanon, District Fatehgarh Sahib, Punjab State, India. This process cross-validated the performance of ANN with a conventional maximum likelihood classifier (MLC) for confirmation. In comparison with the conventional PCC-MLC model (classified maps have an average of 86 – 88.8%, and change maps have an average of 83.6 – 84.2%), the PCC-ANN model achieved accuracy (classified maps have an average of 90.4 – 93.4%, and change maps have an average of 87.4 – 90%). In addition to identifying water surfaces, crop types, and man-made features, this study can also help in performing a wide range of land-use patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢喜豌豆完成签到,获得积分10
刚刚
刚刚
玖月发布了新的文献求助10
刚刚
岁月轻狂发布了新的文献求助10
1秒前
大个应助65146采纳,获得10
2秒前
Owen应助左左采纳,获得10
2秒前
2秒前
天天快乐应助fdsv采纳,获得10
2秒前
豆腐发布了新的文献求助200
3秒前
完美世界应助Zoom采纳,获得10
3秒前
3秒前
SciGPT应助张姣姣采纳,获得10
3秒前
awwwer完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
Jack完成签到,获得积分10
5秒前
5秒前
木子李完成签到,获得积分20
6秒前
SciGPT应助健壮安柏采纳,获得10
6秒前
爆米花应助方国文23采纳,获得10
6秒前
wanci应助我去打球采纳,获得10
7秒前
awwwer发布了新的文献求助10
7秒前
xuxingjie发布了新的文献求助10
8秒前
momo发布了新的文献求助10
8秒前
搞怪半莲发布了新的文献求助10
8秒前
Heisenberg发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
Akim应助sheng采纳,获得10
10秒前
wanglili发布了新的文献求助10
10秒前
有一点动心完成签到,获得积分10
11秒前
11秒前
零贰发布了新的文献求助10
11秒前
Lucas应助栗子采纳,获得10
12秒前
12秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490539
求助须知:如何正确求助?哪些是违规求助? 3077414
关于积分的说明 9148826
捐赠科研通 2769667
什么是DOI,文献DOI怎么找? 1519863
邀请新用户注册赠送积分活动 704336
科研通“疑难数据库(出版商)”最低求助积分说明 702135