摘要
The immunomodulatory roles of Chinese herbal Medicine (CHM) in aquatic animals have been well-recorded. However, how CHM impacts the intestinal microbiota and serum metabolism is not fully understood. In this study, the effects of different additive levels of CHM on the growth performance, immunity, intestinal flora and serum metabolism of hybrid grouper (♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatu) were investigated. The addition of 0.5%, 1.0%, 1.5% and 2.0% Chinese herbal medicine compound to feed could significantly improve the weight gain rate (WGR), specific growth rate (SGR) and survival rate (SR) of grouper, reduced feed coefficient, while had no significant difference on morphometric parameter. The most significant improvement for the parameters above was observed in 1.5% group. Different addition levels of CHM could also significantly enhance the activities of ACP, AKP, SOD, CAT and LZM in serum. Accordingly, the supplementation of CHM significantly induced up-regulation of immune genes such as IL-8, IL-1β, TNF-α, Nrf2, Lzm in the liver, spleen and head kidney of grouper, improved the resistance of grouper to V. harveyi as well. The intestinal flora analysis showed that at the phylum level, the main dominant species of intestinal microorganisms were Firmicutes, Proteobacteria, Bacteroidota, Actinobacteriota, Gemmatimonadota, Desulfobacterota, Fusobacteriota and Myxococcota. At the genus level, the high abundance was Lactobacillus, Streptococcus, Bacteroides, Escherichia, Romboutsia, Sphingomonas and Muribaculaceae. The abundance of probiotics (such as Lachnospiraceae, Lactobacillaceae, Streptococcaceae, etc) in CHM-supplement groups were higher (highest in 1.5% group) compared with control group. Moreover, a total of 11 common differential metabolic pathways were screened by LC-MS metabolism analysis of serum, they were Neuroactive ligand-receptor interaction, Purine metabolism, Linoleic acid, Glycerophospholipid metabolism, Taurine and hypotaurine metabolism, Arginine and proline metabolism, ABC transporters, Aminoacyl-tRNA biosynthesis, Arachidonic acid metabolism, Drug metabolism-cytochrome P450, alpha-Linolenic acid metabolism. Also, three common differential metabolites (PI(20:4(5Z,8Z,11Z,14Z)/18:1(11Z)), PC(20:3(8Z,11Z,14Z)/22:1(13Z)), PC(22:0/20:4(5Z,8Z,11Z,14Z)) associated with intestinal health, growth and disease resistance was found. These data will contributes to a comprehensive understand for the regulatory roles of CHM on fish, which is also beneficial for the disease control and sustainable development of aquaculture.