PDF-UNet: A semi-supervised method for segmentation of breast tumor images using a U-shaped pyramid-dilated network

棱锥(几何) 人工智能 计算机科学 分割 乳腺癌 人工神经网络 注释 深度学习 模式识别(心理学) 医学 机器学习 癌症 光学 物理 内科学
作者
Ahmed Iqbal,Muhammad Sharif
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:221: 119718-119718 被引量:42
标识
DOI:10.1016/j.eswa.2023.119718
摘要

Rapid and precise segmentation of breast tumors is a severe challenge for the global research community to diagnose breast cancer in younger females. An ultrasound system is a non-invasive and efficient way of breast screening. The area, shape, and texture of different breast tumors play a vital role for clinicians in making accurate diagnostic decisions. Furthermore, the limited availability of breast tumor annotated datasets is another challenge for properly training deep neural networks. This research proposes a semi-supervised learning-based method, which incorporates a Data expansion network (DEN), Probability map generator network (PMG), and U-shaped pyramid-dilated fusion network (PDF-UNet) for accurate breast tumor segmentation. The first DEN network is trained on breast unannotated tumor images and generates synthetic images for the data expansion task. The second PMG network generates corresponding probability map images against synthetic unannotated images. Finally, we proposed a segmentation network (PDF-UNet), a modified variant of UNet, to segment the breast tumor images. The results demonstrate that compared with classical UNet, our proposed PDF-UNet achieves an increment of DSC (2.42%) on the Mendeley dataset and an increment of DSC (1.52%) observed on the SIIT dataset. The results reflect that the proposed method is effective when annotated breast ultrasound data is insufficient to train the network. Furthermore, the proposed method can be helpful in relieving the annotation burden of radiologists. The implementation source code is available at GitHub: https://github.com/ahmedeqbal/PDF-UNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
strings完成签到,获得积分10
1秒前
1秒前
2秒前
kksun完成签到,获得积分10
2秒前
2秒前
2秒前
陈喜鸿完成签到,获得积分20
2秒前
3秒前
3秒前
3秒前
3秒前
LCC完成签到 ,获得积分10
4秒前
凯睿发布了新的文献求助10
4秒前
Ziyi_Xu完成签到,获得积分10
5秒前
玉玉应助等你下课采纳,获得20
5秒前
章鱼哥发布了新的文献求助10
6秒前
归尘发布了新的文献求助10
6秒前
6秒前
chompa发布了新的文献求助30
6秒前
7秒前
7秒前
恰个泡芙发布了新的文献求助10
8秒前
化学发布了新的文献求助10
9秒前
9秒前
幽默寄风完成签到 ,获得积分10
9秒前
9秒前
星辰大海应助信仰xy采纳,获得10
11秒前
13秒前
霸气咖啡豆完成签到,获得积分10
13秒前
13秒前
lenny发布了新的文献求助10
13秒前
炙热的晓曼完成签到,获得积分10
13秒前
yanjiusheng完成签到,获得积分10
14秒前
14秒前
14秒前
猪猪完成签到,获得积分10
14秒前
15秒前
搜集达人应助强健的中蓝采纳,获得10
16秒前
16秒前
眼睛大雨筠应助陈喜鸿采纳,获得30
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961269
求助须知:如何正确求助?哪些是违规求助? 3507536
关于积分的说明 11136688
捐赠科研通 3239991
什么是DOI,文献DOI怎么找? 1790625
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803199